
PRISM documentation

Ellert van der Velden

Mar 25, 2020

User Documentation

1 Introduction 3
1.1 Why use PRISM? . 3
1.2 When (not) to use PRISM? . 4

2 Getting started 5
2.1 Installation . 5
2.2 Running tests . 5
2.3 Example usage . 6

3 The PRISM pipeline 7
3.1 MPI implementation . 9

4 ModelLink: A crash course 11
4.1 Writing a ModelLink subclass . 11
4.2 Data identifiers (data_idx) . 15
4.3 Wrapping a model (call_model) . 16

4.3.1 Input arguments . 16
4.3.2 Multi-calling . 17
4.3.3 Backing up progress . 18

4.4 Model discrepancy variance (md_var) . 20
4.4.1 Theory . 21
4.4.2 Implementation . 21

5 Using PRISM 23
5.1 Minimal example . 23
5.2 Projections . 24

5.2.1 Properties . 24
5.2.2 Options . 27
5.2.3 Crystal (GUI) . 30

5.3 Dual nature (normal/worker mode) . 30
5.4 Hybrid sampling . 32

5.4.1 Algorithm . 32
5.4.2 Usage . 33
5.4.3 Application . 34

5.5 General usage rules . 35
5.6 External data files . 36

5.6.1 PRISM parameters file . 36

i

5.6.2 Model parameters file . 38
5.6.3 Model data file . 39

6 Descriptions 41
6.1 Terminology . 41
6.2 PRISM parameters . 45
6.3 HDF5 . 47

7 FAQ 51
7.1 How do I contribute? . 51
7.2 How do I report a bug/problem? . 51
7.3 What does the term . . . mean? . 51
7.4 Where can I get PRISM’s colormaps? . 51
7.5 Which OSs are supported? . 52

8 Community guidelines 53
8.1 License . 53
8.2 Citation . 54
8.3 Additions . 54

9 Pipeline 57

10 Emulator 79
10.1 Classes . 79

10.1.1 Emulator . 79

11 ModelLink 93
11.1 Classes . 93

11.1.1 GaussianLink . 93
11.1.2 ModelLink . 93
11.1.3 PolyLink . 101
11.1.4 SineWaveLink . 101

11.2 Utilities . 101

12 Utilities 103

13 Projection GUI 107
13.1 Classes . 107

13.1.1 MainViewerWindow . 107
13.1.2 OverviewDockWidget . 108
13.1.3 ViewingAreaDockWidget . 113

13.2 Widgets . 113
13.2.1 GUI Base Layout Classes . 113
13.2.2 GUI Base Widget Classes . 114
13.2.3 GUI Widgets Core . 115
13.2.4 GUI Widget Helpers . 115
13.2.5 GUI Preferences . 118

13.3 Functions . 128

14 Internal 131

15 Acknowledgements 135

Python Module Index 137

Index 139

ii

PRISM documentation

This is the documentation for the PRISM package, an efficient and rapid alternative to MCMC methods for optimizing
and analyzing scientific models. PRISM was made by Ellert van der Velden (@1313e) as part of a Ph.D under
supervision of A/Prof. Alan Duffy at Swinburne University of Technology. It is written in pure Python 3 and publicly
available on GitHub.

The documentation of PRISM is spread out over several sections:

• User Documentation

• API Reference

User Documentation 1

https://github.com/1313e
https://www.alanrduffy.com
https://www.swinburne.edu.au
https://www.python.org
https://github.com/1313e/PRISM
https://github.com/1313e/PRISM

PRISM documentation

2 User Documentation

CHAPTER 1

Introduction

Rapid technological advancements allow for both computational resources and observational/experimental instruments
to become better, faster and more precise with every passing year. This leads to an ever-increasing amount of scientific
data being available and more research questions being raised. As a result, scientific models that attempt to address
these questions are becoming more abundant, and are pushing the available resources to the limit as these models
incorporate more complex science and more closely resemble reality.

However, as the number of available models increases, they also tend to become more distinct, making it difficult
to keep track of their individual qualities. A full analysis of every model would be required in order to recognize
these qualities. It is common to employ Markov chain Monte Carlo (MCMC) methods and Bayesian statistics for
performing this task. However, as these methods are meant to be used for making approximations of the posterior
probability distribution function, there must be a more efficient way of analyzing them.

PRISM tries to tackle this problem by using the Bayes linear approach, the emulation technique and history matching
to construct an approximation (‘emulator’) of any given model. The use of these techniques can be seen as special
cases of Bayesian statistics, where limited model evaluations are combined with advanced regression techniques,
covariances and probability calculations. PRISM is designed to easily facilitate and enhance existing MCMC methods
by restricting plausible regions and exploring parameter space efficiently. However, PRISM can additionally be used
as a standalone alternative to MCMC for model analysis, providing insight into the behavior of complex scientific
models. With PRISM, the time spent on evaluating a model is minimized, providing developers with an advanced
model analysis for a fraction of the time required by more traditional methods.

1.1 Why use PRISM?

• Written in pure Python 3, for versatility;

• Stores results in HDF5-files, allowing for easy user-access;

• Can be executed in serial or MPI, on any number of processes;

• Compatible with Windows, Mac OS and Unix-based machines;

• Accepts any type of model and comparison data;

• Built as a plug-and-play tool: all main classes can also be used as base classes;

3

https://portal.hdfgroup.org/display/HDF5/HDF5

PRISM documentation

• Easily linked to any model by writing a single custom ModelLink subclass (see ModelLink: A crash course);

• Capable of reducing relevant parameter space by factors over 100,000 using only a few thousand model evalua-
tions;

• Can be used alone for analyzing models, or combined with MCMC for efficient model parameter estimations.

1.2 When (not) to use PRISM?

It may look very tempting to use PRISM for basically everything, but keep in mind that emulation has its limits. Below
is a general (but non-exhaustive) list of scenarios where PRISM can become really valuable:

• In almost any situation where one wishes to perform a parameter estimation using an MCMC Bayesian analysis
(by using Hybrid sampling). This is especially true for poorly constrained models (low number of available
observational constraints);

• Whenever one wishes to visualize the correlation behavior between different model parameters;

• For quickly exploring the parameter space of a model without performing a full parameter estimation. This can
be very useful when trying out different sets of observational data to study their constraining power;

• For obtaining a reasonably accurate approximation of a model in very close proximity to the most optimal
parameter set.

There are however also situations where one is better off using a different technique, with a general non-exhaustive
list below:

• For obtaining a reasonably accurate approximation of a model in all of parameter space. Due to the way an
emulator is constructed, this could easily require millions of model evaluations and a lot of time and memory;

• When dealing with a model that has a large number of parameters/degrees-of-freedom (>50). This however still
heavily depends on the type of model that is used;

• Whenever a very large number of observational constraints are available and one wishes to use all of them
(unless one also has access to a large supercomputer). In this case, it is a better idea to use full Bayesian instead;

• One wishes to obtain the posterior probability distribution function (PDF) of a model.

A very general and easy way to check if one should use PRISM, is to ask oneself the question: “Would I use a full
Bayesian analysis for this problem, given the required time and resources?”. If the answer is ‘yes’, then PRISM
is probably a good choice, especially as it requires near-similar resources as a Bayesian analysis does (definition of
parameter space; provided comparison data; and a way to evaluate the model).

4 Chapter 1. Introduction

CHAPTER 2

Getting started

2.1 Installation

PRISM can be easily installed by either cloning the repository and installing it manually:

$ git clone https://github.com/1313e/PRISM
$ cd PRISM
$ pip install .

or by installing it directly from PyPI with:

$ pip install prism

PRISM can now be imported as a package with import prism. For using PRISM in MPI, mpi4py >= 3.0.0
is required (not installed automatically).

The PRISM package comes with two ModelLink subclasses. These ModelLink subclasses can be used to experi-
ment with PRISM to see how it works. Using PRISM and the tutorials has several examples explaining the different
functionalities of the package.

2.2 Running tests

If one wants to run pytests on PRISM, all requirements_dev are required. The easiest way to run the tests is by cloning
the repository, installing all requirements and then running pytest on it:

$ git clone https://github.com/1313e/PRISM
$ cd PRISM
$ pip install -r requirements_dev.txt
$ pytest

If PRISM and all requirements_dev are already installed, one can run the tests by running pytest in the installation
directory:

5

https://github.com/1313e/PRISM
https://pypi.org/project/prism
https://github.com/1313e/PRISM/tree/master/tutorials
https://github.com/1313e/PRISM/raw/master/requirements_dev.txt
https://github.com/1313e/PRISM
https://github.com/1313e/PRISM/raw/master/requirements_dev.txt

PRISM documentation

$ cd <path_to_installation_directory>/prism
$ pytest

When using Anaconda, the installation directory path is probably of the form <HOME>/anaconda3/envs/
<environment_name>/lib/pythonX.X/site-packages.

2.3 Example usage

See Minimal example or the tutorials for a documented explanation on this example.

Imports
from prism import Pipeline
from prism.modellink import GaussianLink

Define model data and create ModelLink object
model_data = {3: [3.0, 0.1], 5: [5.0, 0.1], 7: [3.0, 0.1]}
modellink_obj = GaussianLink(model_data=model_data)

Create Pipeline object
pipe = Pipeline(modellink_obj)

Construct first iteration of the emulator
pipe.construct()

Create projections
pipe.project()

6 Chapter 2. Getting started

https://github.com/1313e/PRISM/tree/master/tutorials

CHAPTER 3

The PRISM pipeline

The overall structure of PRISM can be seen in Fig. 3.1 and will be discussed below. The Pipeline object plays a
key-role in the PRISM framework as it governs all other objects and orchestrates their communications and method
calls. It also performs the process of history matching and refocusing (see the PRISM paper for the methodology used
in PRISM). It is linked to the model by a user-written ModelLink object (see ModelLink: A crash course), allowing
the Pipeline object to extract all necessary model information and call the model. In order to ensure flexibility and
clarity, the PRISM framework writes all of its data to one or several HDF5-files using h5py, as well as numpy.

The analysis of a provided model and the construction of the emulator systems for every output value, starts and
ends with the Pipeline object. When a new emulator is requested, the Pipeline object creates a large Latin-
Hypercube design (LHD) of model evaluation samples to get the construction of the first iteration of the emulator
systems started. To ensure that the maximum amount of information can be obtained from evaluating these samples,
a custom Latin-Hypercube sampling code was written. This produces LHDs that attempt to satisfy both the maximin
criterion as well as the correlation criterion. This code is customizable through PRISM and publicly available in the
e13Tools Python package.

This Latin-Hypercube design is then given to the Model Evaluator, which through the provided ModelLink object
evaluates every sample. Using the resulting model outputs, the Active Parameters for every emulator system (indi-
vidual data point) can now be determined. Next, depending on the user, polynomial functions will be constructed
by performing an extensive Regression process for every emulator system, or this can be skipped in favor of a sole
Gaussian analysis (faster, but less accurate). No matter the choice, the emulator systems now have all the required
information to be constructed, which is done by calculating the Prior Expectation and Prior Covariance values for all
evaluated model samples (E(𝐷𝑖) and Var(𝐷𝑖)).

Afterward, the emulator systems are fully constructed and are ready to be evaluated and analyzed. Depending on
whether the user wants to prepare for the next emulator iteration or create a projection (see Projections), the Emulator
Evaluator creates one or several LHDs of emulator evaluation samples, and evaluates them in all emulator systems,
after which an Implausibility Check is carried out. The samples that survive the check can then either be used to
construct the new iteration of emulator systems by sending them to the Model Evaluator, or they can be analyzed
further by performing a Projection. The Pipeline object performs a single cycle by default (to allow for user-
defined analysis algorithms), but can be easily set to continuously cycle.

In addition to the above, PRISM also features a high-level Message Passing Interface (MPI) implementation using the
Python package mpi4py. All emulator systems in PRISM can be constructed independently from each other, in any
order, and only require to communicate when performing the implausibility cut-off checks during history matching.

7

https://arxiv.org/abs/1901.08725
https://portal.hdfgroup.org/display/HDF5/HDF5
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://github.com/1313e/e13Tools

PRISM documentation

Fig. 3.1: The structure of the PRISM pipeline.

8 Chapter 3. The PRISM pipeline

PRISM documentation

Additionally, since different models and/or architectures require different amounts of computational resources, PRISM
can run on any number of MPI processes (including a single one in serial to accommodate for OpenMP codes) and the
same emulator can be used on a different number of MPI processes than it was constructed on (e.g., constructing an
emulator using 8 MPI processes and reloading it with 6). More details on the MPI implementation and its scaling can
be found in MPI implementation.

In Using PRISM and ModelLink: A crash course, the various components of PRISM are described more extensively.

3.1 MPI implementation

Given that most scientific models are either already parallelized or could benefit from parallelization, we had to make
sure that PRISM allows for both MPI and OpenMP coded models to be connected. Additionally, since individual
emulator systems in an emulator iteration are independent of each other, the extra CPUs required for the model should
also be usable by the emulator. For that reason, PRISM features a high-level MPI implementation for using MPI-coded
models, while the Python package NumPy handles the OpenMP side. A mixture of both is also possible (using the
worker_mode context manager).

Here, we discuss the MPI scaling tests that were performed on PRISM. For the tests, the same GaussianLink class
was used as in Minimal example, but this time with 32 emulator systems (comparison data points) instead of 3. In
PRISM, all emulator systems are spread out over the available number of MPI processes as much as possible while
also trying to balance the number of calculations performed per MPI process. Since all emulator systems are stored in
different HDF5-files, it is possible to reinitialize the Pipeline using the same Emulator class and ModelLink
subclass on a different number of MPI processes. To make sure that the results are not influenced by the variation in
evaluation rates, we constructed an emulator of the Gaussian model and used the exact same emulator in every test.

The tests were carried out using any number of MPI processes between 1 and 32, and using a single OpenMP thread
each time for consistency. We generated a Latin-Hypercube design of 3 · 106 samples and measured the average
evaluation rate of the emulator using the same Latin-Hypercube design each time. To take into account any variations
in the evaluation rate caused by initializations, this test was performed 20 times. As a result, this Latin-Hypercube
design was evaluated in the emulator a total of 640 times, giving an absolute total of 1.92 · 109 emulator evaluations.

Fig. 3.2: Figure showing the MPI scaling of PRISM using the emulator of a simple Gaussian model with 32 emulator
systems. The tests involved analyzing a Latin-Hypercube design of 3 · 106 samples in the emulator, determining the
average evaluation rate and executing this a total of 20 times using the same sample set every time. The emulator
used for this was identical in every instance. Left axis: The average evaluation rate of the emulator vs. the number
of MPI processes it is running on. Right axis: The relative speed-up factor vs. the number of MPI processes, which
is defined as 𝑓(𝑥)

𝑓(1)·𝑥 with 𝑓(𝑥) the average evaluation rate and 𝑥 the number of MPI processes. Dotted line: The
minimum acceptable relative speed-up factor, which is always 1/𝑥. Dashed line: A straight line with a slope of
∼0.645, connecting the lowest and highest evaluation rates. The tests were performed using the OzSTAR computing
facility at the Swinburne University of Technology, Melbourne, Australia.

In Fig. 3.2, we show the results of the performed MPI scaling tests. On the left y-axis, the average evaluation rate
vs. the number of MPI processes the test ran on is plotted, while the relative speed-up factor vs. the number of MPI
processes is plotted on the right y-axis. The relative speed-up factor is defined as 𝑓(𝑥)/(𝑓(1)·𝑥) with 𝑓(𝑥) the average

3.1. MPI implementation 9

PRISM documentation

evaluation rate and 𝑥 the number of MPI processes. The ideal MPI scaling would correspond to a relative speed-up
factor of unity for all 𝑥.

In this figure, we can see the effect of the high-level MPI implementation. Because the emulator systems are spread
out over the available MPI processes, the evaluation rate is mostly determined by the runtime of the MPI process
with the highest number of systems assigned. Therefore, if the number of emulator systems (32 in this case) cannot
be divided by the number of available MPI processes, the speed gain is reduced, leading to the plateaus like the one
between 𝑥 = 16 and 𝑥 = 31. Due to the emulator systems not being the same, their individual evaluation rates are
different such that a different evaluation rate has a bigger effect on the average evaluation rate of the emulator the more
MPI processes there are. This is shown by the straight dashed line drawn between 𝑓(1) and 𝑓(32), which has a slope
of ∼0.645.

The relative speed-up factor shows the efficiency of every individual MPI process in a specific run, compared to using a
single MPI process. This also shows the effect of the high-level MPI implementation, giving peaks when the maximum
number of emulator systems per MPI process has decreased. The dotted line shows the minimum acceptable relative
speed-up factor, which is always defined as 1/𝑥. On this line, the average evaluation rate 𝑓(𝑥) for any given number
of MPI processes is always equal to 𝑓(1).

10 Chapter 3. The PRISM pipeline

CHAPTER 4

ModelLink: A crash course

4.1 Writing a ModelLink subclass

In Minimal example, a description is given of how to initialize the Pipeline class using a default ModelLink
subclass. Here, the basic steps for making a custom ModelLink subclass are shown.

Lst. 4.1: example_link.py

-*- coding: utf-8 -*-

Future imports
from __future__ import absolute_import, division, print_function

Package imports
import numpy as np

PRISM imports
from prism.modellink import ModelLink

ExampleLink class definition
class ExampleLink(ModelLink):

Extend class constructor
def __init__(self, *args, **kwargs):

Perform any custom operations here
pass

Set ModelLink flags (name, call_type, MPI_call)
pass

Call superclass constructor
super().__init__(*args, **kwargs)

(continues on next page)

11

PRISM documentation

(continued from previous page)

Define default model parameters (optional)
def get_default_model_parameters(self):

par_dict = {}
return(par_dict)

Define default model data (optional)
def get_default_model_data(self):

data_dict = {}
return(data_dict)

Override call_model abstract method
def call_model(self, emul_i, par_set, data_idx):

Perform operations for obtaining the model output
Following is provided:
'emul_i': Requested iteration
'par_set': Requested sample(s) dict
'data_idx': Requested data point(s)
pass

Override get_md_var abstract method
def get_md_var(self, emul_i, par_set, data_idx):

Perform operations for obtaining the model discrepancy variance
Following is provided:
'emul_i': Requested iteration
'par_set': Requested sample dict
'data_idx': Requested data point(s)
pass

In the example_link.py file above, a minimal example of a ModelLink subclass is shown. It has two abstract methods
that need to be overridden; call_model() (wrapper function for calling the model) and get_md_var() (calcu-
lates the model discrepancy variance). A ModelLink subclass cannot be initialized if either method has not been
overridden. Given the importance of both methods, detailed descriptions are given in Wrapping a model (call_model)
and Model discrepancy variance (md_var), respectively.

Every ModelLink subclass needs to be provided with two different data sets: model parameters and model data.
The model parameters define which parameters the model can take, what their names are and in what value range
each parameter must be. The model data on the other hand, states where in a model realization a data value must be
retrieved and compared with a provided observational value. One can think of the model data as the observational
constraints used to calculate the likelihood in a Bayesian analysis. The different ways in which these two data sets can
be provided are explained further in this section.

Since every model is different, with some requiring preparations in order to work properly, the __init__() con-
structor method may be extended to include any custom code to be executed when the subclass is initialized. The
superclass version of the __init__() method must always be called, as it sets several important flags and proper-
ties, but the time at which this is done does not matter. During the initialization of the Emulator class, it is checked
whether or not the superclass constructor of a provided ModelLink instance was called (to avoid this from being
forgotten).

Besides executing custom code, three properties/flags can be set in __init__(), which have the following default
values if the extended constructor does not set them:

self.name = self.__class__.__name__ # Set instance name to the name of the class
self.call_type = 'single' # Request single model calls
self.MPI_call = False # Request only controller calls

12 Chapter 4. ModelLink: A crash course

PRISM documentation

The first property, name, defines the name of the ModelLink instance. This name is used by the Emulator class
during initialization to check if a constructed emulator is linked to the proper ModelLink instance, in order to avoid
causing mismatches. If one wants to use the same ModelLink subclass for different models (like, using different
parameter spaces), it is recommended to add an identifier for this to this name. An example of this can be found in the
definition of the GaussianLink class, which adds the number of Gaussians in the model to its name property.

The other two properties, call_type and MPI_call, are flags that tell PRISM how the call_model() method
should be used. By default, every model evaluation sample is requested individually in serial, since this would be
the most expected behavior. However, this is most likely not enough for sophisticated models, as they can require
some preparation (e.g., having to read in data files) or more than a single core (in MPI) to function. Therefore,
call_type can be set to accept solely individual samples (‘single’), solely entire sample sets (‘multi’) or
both (‘hybrid’). In the same way, MPI_call can be set to True or False to identify that the model needs to be
executed in serial or in MPI.

Note: If a model uses OpenMP parallelization, it is recommended to set MPI_call to False in the ModelLink
subclass. This allows for all worker ranks to be used in OpenMP threads, while only the controller rank calls the
model.

Finally, the ModelLink class has three methods that can be overridden for adding utility to the
class (of which two are shown in example_link.py). The get_default_model_parameters() and
get_default_model_data() methods return dictionaries containing the default model parameters and model
data to use in this class instance, respectively. By overriding these methods, one can hard-code the use of specific
parameters or comparison data, avoiding having to provide them when initializing the ModelLink subclass. Ad-
ditionally, if a default parameter or data point is also provided during initialization, the provided information will
override the defaults.

Example

The GaussianLink class has default parameters defined:

>>> from prism.modellink import GaussianLink
>>> model_data = {3: [3.0, 0.1]}
>>> modellink_obj = GaussianLink(model_data=model_data)
>>> modellink_obj
GaussianLink(model_parameters={'A1': [1.0, 10.0, 5.0], 'B1': [0.0, 10.0, 5.0],

'C1': [0.0, 5.0, 2.0]},
model_data={3: [3.0, 0.1]})

Providing a custom set of parameters will override the coded defaults:

>>> model_parameters = {'A1': [-5, 7, 2]}
>>> modellink_obj = GaussianLink(model_parameters=model_parameters, model_data=model_
→˓data)
>>> modellink_obj
GaussianLink(model_parameters={'A1': [-5.0, 7.0, 2.0], 'B1': [0.0, 10.0, 5.0],

'C1': [0.0, 5.0, 2.0]},
model_data={3: [3.0, 0.1]})

The third method, get_str_repr(), is a simple function that returns a list containing the representations of all
non-default input arguments the ModelLink subclass takes. It can be overridden to add the missing input arguments
to the full representation of the class, which is automatically called whenever the representation is requested. The
GaussianLink class overrides this method to add its n_gaussians input argument.

4.1. Writing a ModelLink subclass 13

PRISM documentation

Lst. 4.2: line_link.py

-*- coding: utf-8 -*-

Future imports
from __future__ import absolute_import, division, print_function

Package imports
import numpy as np

PRISM imports
from prism.modellink import ModelLink

LineLink class definition
class LineLink(ModelLink):

Extend class constructor
def __init__(self, *args, **kwargs):

No custom operations or flags required
pass

Call superclass constructor
super().__init__(*args, **kwargs)

Define default model parameters (optional)
def get_default_model_parameters(self):

par_dict = {
'A': [-10, 10, 3], # Intercept in [-10, 10] with estimate of 3
'B': [0, 5, 1.5]} # Slope in [0, 5] with estimate of 1.5

return(par_dict)

Define default model data (optional)
def get_default_model_data(self):

data_dict = {
1: [4.5, 0.1], # f(1) = 4.5 +- 0.1
2.5: [6.8, 0.1], # f(2.5) = 6.8 +- 0.1
-2: [0, 0.1]} # f(-2) = 0 +- 0.1

return(data_dict)

Override call_model abstract method
def call_model(self, emul_i, par_set, data_idx):

Calculate the value on a straight line for requested data_idx
vals = par_set['A']+np.array(data_idx)*par_set['B']
return(vals)

Override get_md_var abstract method
def get_md_var(self, emul_i, par_set, data_idx):

Calculate the model discrepancy variance
For a straight line, this value can be set to a constant
return(1e-4*np.ones_like(data_idx))

Using all the information above and the template given in example_link.py, a ModelLink subclass can be writ-
ten for a straight line model, shown in the line_link.py file above. Here, all methods discussed before (besides the
get_str_repr() method, since no additional input arguments are used) have been overridden. Given that this
model is very simple, no changes have been made to the instance constructor, __init__(). Therefore, only single
evaluation samples in serial are requested.

14 Chapter 4. ModelLink: A crash course

PRISM documentation

PRISM provides the test_subclass() function that allows the user to check if a ModelLink subclass is properly
written. It returns an instance of the subclass if the test passes, or raises a specific error if not. We can use this function
to initialize our newly written subclass:

>>> from line_link import LineLink
>>> from prism.modellink import test_subclass
>>> modellink_obj = test_subclass(LineLink)
>>> modellink_obj
LineLink(model_parameters={'A': [-10.0, 10.0, 3.0], 'B': [0.0, 5.0, 1.5]},

model_data={2.5: [6.8, 0.1], -2: [0.0, 0.1], 1: [4.5, 0.1]})

Since no errors were raised, we can now use the initialized ModelLink subclass to initialize the Pipeline class:

>>> from prism import Pipeline
>>> pipe = Pipeline(modellink_obj)

4.2 Data identifiers (data_idx)

The comparison data points that are given to the ModelLink class each require a unique data point identifier, allowing
PRISM to distinguish between them. This data identifier (called data_idx) can be used by the model wrapped in
the call_model() method as a description of how to calculate/extract the data point. It can be provided as a non-
mutable sequence (a Python tuple) of a combination of booleans; integers; floats; and strings, each element describing
a part of the operations required. The data identifier sequence can be of any length, and the length can differ between
data points.

Note: If a data identifier is given as a single element, then the identifier is saved as that single element instead of a
tuple. For example, data_idx = [(1), (2), (3, 4), ...] would be saved as data_idx = [1, 2,
(3, 4), ...].

In its simplest form, the data identifier is a single value that is given to a function 𝑓(𝑥), which is a function that is
defined for a given model parameter set and returns the function value belonging to the input 𝑥. This is the way
the data identifier works for the three standard ModelLink subclasses; SineWaveLink; GaussianLink; and
PolyLink. It is also used in the LineLink class described in the line_link.py file above.

For more sophisticated models, a single value/element is not enough to uniquely identify a data point. A simple
example of this would be if the model generates a two-dimensional array of values, where one specific value needs to
be returned. Then, the data identifier can be given as a tuple of two integers, like data_idx = [(1, 1), (4,
8), ...]. In the case that the model also generates several two-dimensional arrays which are named, an extra
string could be used to identify this array first: data_idx = [(‘array1’, 1, 1), (‘array4’, 4, 8),
...].

An even more complex example is when a data point needs to be retrieved from a specific named data set at a certain
point in a model simulation, after which an operation needs to be carried out (like, making a histogram of the results)
and the resulting data point is then found at a specific value in that histogram. The histogram here might only be
necessary to make for specific data sets, while different operations are required for others. PRISM allows for such
complex data identifiers to be given, as it treats every sequence of data identifier elements as separated. Two differ-
ent data identifiers working as described above can for example be written as data_idx = [(14, ‘array1’,
‘histogram’, 7.5), (17, ‘array7’, ‘average’), ...], where the first data point requires an ex-
tra (float) value for the histogram and the second does not. In order to do this, one would of course be required to make
sure that the call_model() method can perform these operations when provided with the proper data identifier.

4.2. Data identifiers (data_idx) 15

PRISM documentation

4.3 Wrapping a model (call_model)

The call_model() method is the most important method in the entire PRISM package. It provides the Pipeline
instance with a way to call the model that is wrapped in the user-defined ModelLink subclass. For PRISM, this
method is a black box: it takes a parameter/sample set, performs a series of unknown operations and returns the values
corresponding to the requested data points and sample(s). Therefore, the call_model() method must be written
with great care.

4.3.1 Input arguments

Depending on the values of the multi_call and MPI_call flags (where the first is set by the call_type
flag), the Pipeline instance will use the call_model() method differently. As explained in Writing a Mod-
elLink subclass, every model evaluation sample is requested individually in serial by default, which corresponds to
multi_call is False and MPI_call is False. When single-calling a model, PRISM expects an array-like
container back with shape (n_data), where the order of the elements is the same as the order of the requested
data_idx. If we assume that we have an instance of the LineLink class (introduced in line_link.py) called
modellink_obj and want to evaluate the model three times for all data points, then the model would be called
as (solely by the controller rank):

Get emul_i, sam_set and data_idx
emul_i = 1
sam_set = np.random.rand(3, modellink_obj.n_par)
data_idx = modellink_obj.data_idx

Evaluate model
mod_set = np.zeros([sam_set.shape[0], len(data_idx)])
for i, par_set in enumerate(sam_set):

par_dict = sdict(zip(modellink_obj.par_name, par_set))
mod_set[i] = modellink_obj.call_model(emul_i=emul_i,

par_set=par_dict,
data_idx=data_idx)

Here, we looped through the entire sample set one-by-one, converted every individual sample to a (sorted) dict and
called the model with it. The emulator iteration is given as a normal integer and the data identifiers data_idx is
provided as a list of individual data identifiers (which are either single elements or tuples of elements, as described in
Data identifiers (data_idx)). The requested data identifiers are not necessarily the same as those given in data_idx.
An individual sample provided in this way will be of the form:

par_dict = {'par_1_name': par_1_val,
'par_2_name': par_2_val,
...,
'par_n_name': par_n_val}

An example of this would be par_dict = {‘A’: 1.0, ‘B’: 2.0} for the LineLink class. This works very
well for models that do not require any preparation before they can start evaluating and requires a minimal amount
of effort to implement. However, if the sample set is very large, then evaluating the model in this fashion can be
inefficient due to many memory look-ups.

Therefore, the GaussianLink class accepts both single and multi-calls. When multi-calling a model, PRISM ex-
pects an array-like container back with shape (n_sam, n_data), where the order of the columns is the same as
the order of the requested data_idx. So, if we use the same example again, but this time have an instance of the
GaussianLink class with multi_call is True, then the model would be called as (again solely by the controller
rank):

16 Chapter 4. ModelLink: A crash course

PRISM documentation

Get emul_i, sam_set and data_idx
emul_i = 1
sam_set = np.random.rand(3, modellink_obj.n_par)
data_idx = modellink_obj.data_idx

Evaluate model
sam_dict = sdict(zip(modellink_obj.par_name, sam_set.T))
mod_set = modellink_obj.call_model(emul_i=emul_i,

par_set=sam_dict,
data_idx=data_idx)

This call is roughly the same as before, but this time the entire sample set is provided as a (sorted) dict instead of
individual samples. The lay-out of this sample dict is of the form:

sam_dict = {'par_1_name': [par_1_val_1, par_1_val_2, ..., par_1_val_m],
'par_2_name': [par_2_val_1, par_2_val_2, ..., par_2_val_m],
...,
'par_n_name': [par_n_val_1, par_n_val_2, ..., par_n_val_m]}

Again, in the case of the GaussianLink class, this sample dict could look like sam_dict = {‘A1’: [1.0,
5.5, 10.0], ‘B1’: [0.0, 5.0, 10.0], ‘C1’: [0.0, 2.5, 5.0]}. This can be used when the
model requires some kind of preparation before being able to perform evaluations, or when it is simply more efficient
to provide all requested samples at once (like for the GaussianLink class).

Note: If a model uses OpenMP parallelization, it is recommended to set MPI_call to False in the ModelLink
subclass. This allows for all worker ranks to be used in OpenMP threads, while only the controller rank calls the
model.

Note: If one wishes to transform the received sam_dict back into a normal NumPy array of shape (n_sam,
n_par), this can be done quite easily by executing sam_set = np.array(par_set.values()).T, where
par_set is the sam_dict provided to the call_model() method. Keep in mind that doing so means that the
columns are sorted on the names of the model parameters. If one instead wishes to transform it into a generator, use
sam_set=map(lambda *args: args, *par_set.values()).

New in version 1.1.2: It is also possible to make call_model() return a dict instead, where it has the identifiers in
the requested data_idx as its keys and scalars (single-call) or 1D array-likes of shape (n_sam) (multi-call) as its
values. PRISM will automatically convert the dict back to the array-like container format that is normally expected.

When the MPI_call flag is set to True, the calls to the call_model() method are almost the same as
described above. The only difference is that all ranks call the method (each providing the same emul_i,
par_dict/sam_dict and data_idx) instead of just the controller rank.

4.3.2 Multi-calling

When the multi_call flag is set to False, the call_model()method is most likely nothing more than a simple
function. But, when multi_call is set to True, call_model() can be a lot more complex. An example of this
would be if we tried to make an emulator of an emulator (which is possible, but completely pointless). In this case,
it would be necessary for the “model” (as we are going to call the emulated emulator from now on) to be loaded into
memory first before it can be evaluated. Although loading an emulator into memory usually does not take that long,
we do not want to do this for every single “model” evaluation. Besides, evaluating an emulator is much quicker when
all samples are evaluated at once (due to the way the _evaluate_sam_set() method is written).

4.3. Wrapping a model (call_model) 17

PRISM documentation

So, therefore, it is necessary to use multi_call is True for this “model”. If we assume that we have already made
an emulator of the LineLink class, then, the call_model() method could be written as:

def call_model(self, emul_i, par_set, data_idx):
Initialize Pipeline object as a model
modellink_obj = LineLink()
pipe_model = Pipeline(modellink_obj, working_dir='linelink_0')

Call pipe_model
mod_set = pipe_model.evaluate(par_set, emul_i)['adj_exp_val']

Make sure only the requested data points are kept
req_idx = [pipe_model.emulator._data_idx[emul_i].index(idx) for idx in data_idx]
mod_set = mod_set[:, req_idx]

Return mod_set
return(mod_set)

Here, we only initialize the “model” once per model call, and then evaluate all samples in it by using the evaluate()
method (which can take sample dicts as a valid input argument). This returns a dict of the evaluation results, where
we are only interested in the adjusted expectation values. Note that making an emulator of an emulator is pointless,
but used here as an example.

Note: Due to the way PRISM is written, it is technically speaking not necessary to reinitialize the Pipeline class
every time that call_model() is called. It is possible to initialize it when the corresponding ModelLink subclass
is initialized and keep it in memory. The code above would however be necessary if the “model” works in the same
way as PRISM’s worker_mode, where all worker ranks are listening for calls until the “model” is finalized. This
finalization would be required in order to give PRISM control back over all ranks.

4.3.3 Backing up progress

New in version 1.1.1.

Warning: This feature is still experimental and it may see significant changes or be (re)moved in the future.

In PRISM, an emulator system is constructed by calculating all required components individually. This means that
the construction process of an emulator iteration can easily be interrupted and restored at a later time, only losing
the progress that was made in the current step (e.g., interrupting construction during the calculation of the covariance
matrix will lose progress made there, but not the already previously finished steps). This system was implemented
to accommodate for PRISM running on clusters, where the construction is more prone to interruptions due to, for
example, jobs timing out, and to allow for PRISM to be loaded unto any number of MPI processes.

However, the biggest step in the construction of all emulator systems, is the evaluation of the model. Since the
evaluation of the model is carried out by the call_model() method, PRISM has no control over what is happening
until this method gives control back to the Pipeline instance (by returning the requested data points). Therefore,
automated backups of already calculated data points cannot be performed by PRISM itself, running the risk that many
CPU hours are wasted if a job on a cluster takes longer than initially expected and times out. While this could be
avoided if the user writes its own backup system, this would require more work from the user, which clashes with
PRISM’s ease-of-use policy.

Therefore, the ModelLink class implements its own (experimental) backup system based on the hickle package,
given by the _make_backup() and _read_backup() methods. This backup system is best used for models that
are multi-called (multi_call set to True), as made backups will replace previous ones (of the same type). The

18 Chapter 4. ModelLink: A crash course

https://github.com/telegraphic/hickle

PRISM documentation

_make_backup() method is meant to be used from within the call_model() method and will not work if called
anywhere else. Attempting to call it incorrectly (e.g., not from within call_model() or with incorrect arguments),
will raise a RequestWarning and simply return without doing anything, rather than raising a RequestError.
This is to make sure that using it incorrectly does not disrupt the call_model() call, as that has the exact opposite
effect of what the backup system tries to achieve.

The _make_backup() method takes two arguments, *args and **kwargs, of which at least one is required.
Calling it from within the call_model() method will produce an HDF5-file containing the emul_i, par_set
and data_idx argument values that were used to call call_model() with, and the supplied *args and
**kwargs. The name of the HDF5-file contains the values of emul_i and name, and will be saved in the cur-
rent working directory (NOT the emulator working directory, as the ModelLink instance has no access to its path).
The backup can be read in by passing the value of emul_i to the _read_backup() method of the corresponding
ModelLink instance, which will return a dict containing the values of the five arguments that were saved to the file.

Backups can be made at any point during the execution of call_model(), and basically all types of objects are
compatible and can be viewed freely in the HDF5-file. It is possible that instances of certain custom classes may not be
supported by the hickle package, in which case they will be pickled and saved as a string, causing them to not be able
to be viewed freely (but they can still be backed up). Depending on the size of the data provided, it can sometimes take
a little while before a backup is made. Therefore, it is probably best to trigger making backups at specified progress
points in call_model().

To illustrate how this backup system can be used, assume that we have written a ModelLink subclass, which requires
some preparation before it can start evaluating the wrapped model. Here, we will assume that this preparation is
provided by a function called prepare_model(), which returns an instance of some class that can be used to
evaluate the model after the preparation is completed. Then, we could incorporate the backup system by writing a
call_model() method like this:

def call_model(self, emul_i, par_set, data_idx):
Prepare the model for evaluation
model = prepare_model()

Controller performs evaluations
if model.is_controller:

Initialize empty array of results
mod_set = np.zeros([len(par_set['par1']), len(data_idx)])

Unpack par_set into a NumPy array
sam_set = np.array(par_set.values()).T

Call model for every individual sample in sam_set
for i, sam in enumerate(sam_set):

mod_set[i] = model.evaluate(sam, data_idx)

Make a backup every 500 evaluations
if not((i+1) % 500):

self._make_backup(mod_set=mod_set[:i])

Finalize the model
model.finalize()

Return the results on the controller
if model.is_controller:

return(mod_set)

The code above shows an example of a model that needs to be initialized before it can be multi-called in MPI, and
needs to be finalized afterward. Since such a model is probably quite complex, it may be a good idea to make a backup
every once in a while. Therefore, whenever 500 evaluations have been done, a backup is made of all results gained
up to that point. This means that whenever the model evaluation process is interrupted, a maximum of the last 500

4.3. Wrapping a model (call_model) 19

https://github.com/telegraphic/hickle

PRISM documentation

evaluations is lost. The evaluations that are not lost can be loaded back in by using the _read_backup() method,
and potentially (after a bit of formatting) be passed to the ext_real_set input argument of the construct()
method when attempting to construct the emulator iteration again.

Note that if model.evaluate()was implemented such that it takes the entire sample set at once rather than one at a
time, calling _make_backup() in model.evaluate() works perfectly fine, as long as model.evaluate()
is always called by call_model() or any other function for which this is true. Put a little bit more simple:
_make_backup() must be called either directly or indirectly by call_model(), as shown in the following
example.

Example

def call_model(self, emul_i, par_set, data_idx):
Call a function A and return its output
This function does not require emul_i, so do not provide it
return(A(self, par_set, data_idx))

def A(modellink_obj, par_set, data_idx):
Prepare model
model = prepare_model()

Prepare par_set for evaluation
sam_set = np.array(par_set.values()).T

Call a function B
mod_set = B(modellink_obj, model, sam_set, data_idx)

Finalize the model
model.finalize()

Return the results
return(mod_set)

def B(modellink_obj, model_obj, sam_set, data_idx):
Prepare mod_set
mod_set = np.zeros([np.shape(sam_set)[0], len(data_idx)])

Call model for every individual sample in sam_set
for i, sam in enumerate(sam_set):

mod_set[i] = model_obj.evaluate(sam, data_idx)

Make a backup every 500 evaluations
if not((i+1) % 500):

modellink_obj._make_backup(mod_set=mod_set[:i+1])

Return mod_set
return(mod_set)

4.4 Model discrepancy variance (md_var)

Of the three different variances that are used for calculating the implausibility values of a parameter set, the model
discrepancy variance is by far the most important. The model discrepancy variance describes all uncertainty about the
correctness of the model output that is caused by the model itself. This includes the accuracy of the code implemen-
tation, completeness of the inclusion of the involved physics, made assumptions and the accuracy of the output itself,

20 Chapter 4. ModelLink: A crash course

PRISM documentation

amongst others. It therefore acts as a measure of the quality of the model that is being emulated by PRISM, and as
with call_model(), must be handled with great care.

4.4.1 Theory

When PRISM constructs an emulator, it attempts to make a perfect approximation of the model that covers the absolute
plausible regions of parameter space. This perfect approximation would be reached if the adjusted emulator variance
(adj_var) is zero for all samples. In this case, the emulator has the same variance associated with it as the model, which
is given by the model discrepancy variance. Therefore, if the model discrepancy variance is determined incorrectly,
the emulator itself will be incorrect as well.

The reason for this is as follows. The implausibility value of a parameter set states how many standard deviations
the emulator system expects the model realization corresponding to this parameter set, to be away from explaining
the model comparison data. When the total variance increases, the implausibility value decreases (since less standard
deviations fit in the total difference). For an emulator system that is still very inaccurate (e.g., first iteration), the
adjusted emulator variance dominates over the other two variances. However, later on, the adjusted emulator variance
becomes less and less dominant, causing the other two variances to start playing a role. In most cases, it is safe to
assume that the model discrepancy variance is higher than the observational variance, since a model would be fitting
noise if this was not the case. Therefore, there is going to be a moment when the model discrepancy variance starts
being close to the adjusted emulator variance.

When this happens, the plausible region of parameter space starts being determined by the model discrepancy variance.
If the model discrepancy variance is generally higher than it should be, then this will often result into the emulator
system not converging as far as it could have, since parts of parameter space are still marked as plausible. The opposite
however (the model discrepancy variance generally being lower than it should be) can mark parts of parameter space
as implausible while they are not. This means that these parts are removed from the emulator.

From the above, it becomes clear that overestimating the model discrepancy variance is much less costly than under-
estimating its value. It is therefore important that this variance is properly described at all times. However, since the
description of the model discrepancy variance can take a large amount of time, PRISM uses its own default description
in case none was provided, which is defined as Var(𝜖md,𝑖) = (𝑧𝑖/6)

2, where Var(𝜖md,𝑖) is the model discrepancy
variance of a specified model comparison data point 𝑖 and 𝑧𝑖 is the corresponding data value. If one assumes that a
model output within half of the data is considered to be acceptable, with acceptable being defined as the 3𝜎-interval,
then the model discrepancy variance is obtained as:

[𝑧𝑖 − 3𝜎, 𝑧𝑖 + 3𝜎] =

[︂
1

2
𝑧𝑖,

3

2
𝑧𝑖

]︂
,

6𝜎 = 𝑧𝑖,

𝜎 =
𝑧𝑖
6
,

Var(𝜖md,𝑖) = 𝜎2 =
(︁𝑧𝑖
6

)︁2

.

This description of the model discrepancy variance usually works well for simple models, and acts as a starting point
within PRISM. When models become bigger and more complex, it is likely that such a description is not enough.
Given that the model discrepancy variance is unique to every model and might even be different for every model
output, PRISM cannot possibly cover all scenarios. It is therefore advised that the model discrepancy variance is
provided externally by the user.

4.4.2 Implementation

The model discrepancy variance is given by the get_md_var() method. This method is, like call_model(),
an abstract method and must be overridden by the ModelLink subclass before it can be initialized. The

4.4. Model discrepancy variance (md_var) 21

PRISM documentation

get_md_var() method is called every time the implausibility value of an emulator evaluation sample is deter-
mined. Unlike the call_model() method, the get_md_var() method is called by individual emulator systems,
as they determine implausibility values individually.

For this reason, the get_md_var() method is provided with the emulator iteration emul_i, a single parameter set
par_set and the data identifiers requested by the emulator system data_idx. The call_type and MPI_call
flags have no influence on the way the get_md_var() method is used, as it is always called in serial for a single
parameter set. When it is called, PRISM expects an array-like container back with shape (n_data) (if 1𝜎-interval is
centered) or shape (n_data, 2) (if 1𝜎-interval is given by upper and lower errors), where the order of the elements
is the same as the order of the requested data_idx. The default model discrepancy variance description given above
is used if the get_md_var() method raises a NotImplementedError, but this is discouraged.

Warning: Because the get_md_var() method is always called for single parameter sets, it is important that it
can be called without requiring any preparation of data or models.

New in version 1.1.2: It is also possible to make get_md_var() return a dict instead, where it has the identifiers
in the requested data_idx as its keys and scalars (centered) or 1D array-likes of shape (2) (non-centered) as its
values. PRISM will automatically convert the dict back to the array-like container format that is normally expected.

22 Chapter 4. ModelLink: A crash course

CHAPTER 5

Using PRISM

Here, various different aspects of how the PRISM package can be used are described.

5.1 Minimal example

A minimal example on how to initialize and use the PRISM pipeline is shown here. First, one has to import the
Pipeline class and a ModelLink subclass:

>>> from prism import Pipeline
>>> from prism.modellink import GaussianLink

Normally, one would import a custom-made ModelLink subclass, but for this example one of the two ModelLink
subclasses that come with the PRISM package is used (see Writing a ModelLink subclass for the basic structure of
writing a custom ModelLink subclass).

Next, the ModelLink should be initialized, which is the GaussianLink class in this case. In addition to user-
defined arguments, every ModelLink subclass takes two optional arguments, model_parameters and model_data.
The use of either one will add the provided parameters/data to the default parameters/data defined in the class. Since
the GaussianLink class does not have default data defined, it is required to supply it with some data during initial-
ization (using an array, dict or external file):

>>> # f(3) = 3.0 +- 0.1, f(5) = 5.0 +- 0.1, f(7) = 3.0 +- 0.1
>>> model_data = {3: [3.0, 0.1], 5: [5.0, 0.1], 7: [3.0, 0.1]}
>>> modellink_obj = GaussianLink(model_data=model_data)

Here, the GaussianLink class was initialized by giving it three custom data points and using its default parameters.
One can check this by looking at the representation of this GaussianLink object:

>>> modellink_obj
GaussianLink(model_parameters={'A1': [1.0, 10.0, 5.0], 'B1': [0.0, 10.0, 5.0],

'C1': [0.0, 5.0, 2.0]},
model_data={7: [3.0, 0.1], 5: [5.0, 0.1], 3: [3.0, 0.1]})

23

PRISM documentation

The Pipeline class takes several optional arguments, which are mostly paths and the type of Emulator class that
must be used. It also takes one mandatory argument, which is an instance of the ModelLink subclass to use. Since
it has already been initialized above, the Pipeline class can be initialized:

>>> pipe = pipeline(modellink_obj)
>>> pipe
Pipeline(GaussianLink(model_parameters={'A1': [1.0, 10.0, 5.0], 'B1': [0.0, 10.0, 5.
→˓0],

'C1': [0.0, 5.0, 2.0]},
model_data={7: [3.0, 0.1], 5: [5.0, 0.1], 3: [3.0, 0.1]}),

working_dir='prism_0')

Since no working directory was provided to the Pipeline class and none already existed, it automatically created
one (prism_0).

PRISM is now completely ready to start emulating the model. The Pipeline allows for all steps in a full cycle (see
PRISM pipeline) to be executed automatically:

>>> pipe.run()

which is equivalent to:

>>> pipe.construct(analyze=False)
>>> pipe.analyze()
>>> pipe.project()

This will construct the next iteration (first in this case) of the emulator, analyze it to check if it contains plausible
regions and make projections of all active parameters. The current state of the Pipeline object can be viewed by
calling the details() method (called automatically after most user-methods), which gives an overview of many
properties that the Pipeline object currently has.

This is all that is required to construct an emulator of the model of choice. All user-methods, with one exception
(evaluate()), solely take optional arguments and perform the operations that make the most sense given the current
state of the Pipeline object if no arguments are given. These arguments allow for one to modify the performed
operations, like reconstructing/reanalyzing previous iterations, projecting specific parameters, evaluating the emulator
and more.

5.2 Projections

After having made an emulator of a given model, PRISM can show the user the knowledge it has about the behavior
of this model by making projections of the active parameters in a specific emulator iteration. These projections are
created by the project() method, which has many different properties and options. For showing them below, the
same emulator as the one in Minimal example is used.

5.2.1 Properties

Projections (and their figures) are made by analyzing a large set of evaluations samples. For 3D projections, this set is
made up of a grid of proj_res x proj_res samples for the plotted (active) parameters, where the values for the
remaining parameters in every individual grid point are given by an LHD of proj_depth samples. This gives the
total number of analyzed samples as proj_res x proj_res x proj_depth.

Every sample in the sample set is then analyzed in the emulator, saving whether or not this sample is plausible and
what the implausibility value at the first cut-off is (the first value in impl_cut). This yields proj_depth results
per grid point, which can be used to determine the fraction of samples that is plausible and the minimum implausibility

24 Chapter 5. Using PRISM

PRISM documentation

value at the first cut-off in this point. Doing this for the entire grid and interpolating them, creates a map of results
that is independent of the values of the non-plotted parameters. For 2D projections, it works the same way, except that
only a single active parameter is plotted.

Note: When using a 2D model, the projection depth used to make a 2D projection will be proj_depth, which is
to be expected. However, when using an nD model, the projection depth of a 2D projection is equal to proj_res x
proj_depth. This is to make sure that for an nD model, the density of samples in a 2D projection is the same as in
a 3D projection.

The project() method solely takes optional arguments. Calling it without any arguments will produce six projec-
tion figures: three 2D projections and three 3D projections. One of each type is shown below.

Fig. 5.1: 2D projection figure of model parameter 𝐴1. The vertical dashed line shows the parameter estimate of 𝐴1,
whereas the horizontal red line shows the first implausibility cut-off value.

A projection figure is made up of two subplots. The upper subplot shows a map of minimum implausibility values that
can be reached for any given value (combination) of the plotted parameter(s). The lower subplot gives a map of the
fraction of samples that is plausible in a specified point on the grid (called “line-of-sight depth” due to the way it is
calculated). Another way of describing this map is that it gives the probability that a parameter set with given plotted
value(s) is plausible.

Both projection types have a different purpose. A 3D projection gives insight into what the dependencies (or correla-
tions) are between the two plotted parameters, by showing where the best (top) and most (bottom) plausible samples

5.2. Projections 25

PRISM documentation

Fig. 5.2: 3D projection figure of model parameters 𝐴1 and 𝐵1. The dashed lines show the estimates of both parameters.

26 Chapter 5. Using PRISM

PRISM documentation

can be found. On the other hand, a 2D projection is quite similar in meaning to a maximum likelihood optimization
performed by MCMC methods, with the difference being that the projection is based on expectations rather than real
model output. A combination of both subplots allows for many model properties to be derived, especially when they
do not agree with each other.

5.2.2 Options

The project() method takes two (optional) arguments, emul_i and proj_par. The first controls which emulator
iteration should be used, while the latter provides the model parameters of which projections need to be made. Since
it only makes sense to make projections of active parameters, all passive parameters are filtered out of proj_par. The
remaining parameters are then used to determine which projections are required (which also depends on the requested
projection types). For example, if one wishes to only obtain projections of the 𝐴1 and 𝐵1 parameters (which are both
active) in iteration 1, then this can be done with:

>>> pipe.project(1, ('A1', 'B1'))

This would generate the figures shown above, as well as the 2D projection figure of 𝐵1. By default, the last constructed
emulator iteration and all model parameters are requested.

The remaining input arguments can only be given as keyword arguments, since they control many different aspects
of the project() method. The proj_type argument controls which projection types to make. For 2D models, this
is always ‘2D’ and cannot be modified. However, for nD models, this can be set to ‘2D’ (only 2D projections), ‘3D’
(only 3D projections) or ‘both’ (both 2D and 3D projections). By default, it is set to ‘both’.

The figure argument is a bool, that determines whether or not the projection figures should be created after calculating
the projection data. If True, the projection figures will be created and saved, which is done by default. If False,
the data that is contained within the projection figures will be calculated and returned in a dict. This allows the user to
either let PRISM create the projection figures using the standard template or create the figures themselves.

The align argument controls the alignment of the subplots in every projection figure. By default, it aligns the subplots
in a column (‘col’), as shown in the figures above. Aligning the subplots in a row (‘row’) would give Fig. 5.1 as the
figure below.

Fig. 5.3: 2D projection figure of model parameter 𝐴1 with the ‘row’ alignment.

New in version 1.1.2: The show_cuts argument is also a bool, that determines whether to show all implausibility cut-
off values in 2D projections (True) or only the first cut-off value (False, default). In some cases, this may be useful
when the first cut-off is not definitive in accepting or rejecting parameter values (as explained below for the smooth
parameter).

The smooth argument is yet another bool, that determines what to do if a grid point in the projection figure contains no
plausible samples, but does contain a minimum implausibility value below the first non-wildcard cut-off. If False,
which is the default, these values are kept in the figure, which may show up as artifact-like features. If True, these
values are set to the first cut-off, basically removing them from the projection figure. This may however also remove
interesting features. Below are two identical projections, one that is smoothed and one that is not, to showcase this
difference (these projections are from the second iteration, since this effect rarely occurs in the first iteration).

5.2. Projections 27

PRISM documentation

Fig. 5.4: Non-smoothed 3D projection figure of model parameters 𝐴1 and 𝐵1.

28 Chapter 5. Using PRISM

PRISM documentation

Fig. 5.5: Smoothed 3D projection figure of model parameters 𝐴1 and 𝐵1.

5.2. Projections 29

PRISM documentation

In these figures, one can see that the non-smoothed projection shows many features in the upper subplot that look like
artifacts. These features are however not artifacts, but caused by a sample (or samples) having its highest implausibility
value being below the first implausibility cut-off, but still being implausible due to failing a later cut-off. For example,
if the implausibility cut-offs are [4.0, 3.7, 3.5] and a sample has implausibility values [3.9, 3.8, 3.2],
it is found implausible due to failing to meet the second cut-off. However, since the first value is still the highest
implausibility value, that value is used in the projection figure. Smoothing figures usually allows for 3D projections
(2D projections rarely show this) to become less crowded, but they do throw away information. It should therefore
only be used when necessary.

New in version 1.2.3: The use_par_space argument is also a bool, which controls whether the axes limits should be
given by the model parameter space limits (True) or by the parameter space over which the emulator iteration is
defined (False, default). If False, only the parameter space in which the emulator is defined is shown, which more
often than not allows for more details to be seen in the projection figure. If True, the full model parameter space
is used for the axes limits, allowing projection figures from different iterations to be compared with each other more
easily.

The force argument is a bool, which controls what to do if a projection is requested for which data already exists. If
False (default), it will use the previously acquired projection data to create the projection figure if it does not exist,
skip if it does or return the figure data if figure is False. If True, the projection data and all associated projection
figures will be deleted, and the projection will be recalculated.

The remaining seven arguments are keyword argument dicts, that need to be passed to the various different plotting
functions that are used for creating the projection figures. The fig_kwargs dict is passed to the figure() func-
tion when creating the projection figure instance. The impl_kwargs_2D and los_kwargs_2D dicts are passed to the
plot() function when making the minimum implausibility and line-of-sight depth subplots, respectively, for the
2D projections. Similarly, the impl_kwargs_3D and los_kwargs_3D dicts are passed to the hexbin() function for
3D projections. And, finally, the line_kwargs_est and line_kwargs_cut dicts are passed to the draw() function for
drawing the parameter estimate and implausibility cut-off lines.

5.2.3 Crystal (GUI)

New in version 1.2.0.

PRISM also has an internal GUI (graphical user-interface) for creating; viewing; comparing; and analyzing projection
figures, called Crystal. Crystal can be started from any Pipeline object by using the crystal() method.

5.3 Dual nature (normal/worker mode)

PRISM features a high-level MPI implementation, as described in MPI implementation: all user-methods and most
major methods are to be executed by all MPI ranks at the same time, and PRISM will automatically distribute the
work among the available ranks within this function/method. This allows for PRISM to be used with both serial and
parallel models, by setting the MPI_call flag accordingly, while also allowing for the same code to be used in serial
and parallel. However, given that the emulator of PRISM can be very useful for usage in other routines, like Hybrid
sampling, an external code will call PRISM’s methods. In order to use PRISM in parallel with a parallelized model,
this code would have to call PRISM with all MPI ranks simultaneously at all times, which may not always be possible
(e.g., when using MCMC methods).

Therefore, PRISM has a dual execution/call nature, where it can be switched between two different modes. In the
default mode, PRISM works as described before, where all MPI ranks call the same user-code. However, by using
the WorkerMode context manager, accessed through worker_mode(), all code within will be executed in worker
mode. When in worker mode, all worker ranks are continously listening for calls from the controller rank, made with
the _make_call() and _make_call_workers() methods. They will continue to do so until the controller
exits WorkerMode with __exit__(). Manually exiting should solely be done in advanced use-cases.

30 Chapter 5. Using PRISM

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.figure.html#matplotlib.pyplot.figure
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hexbin.html#matplotlib.pyplot.hexbin
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.draw.html#matplotlib.pyplot.draw

PRISM documentation

In worker_mode, one uses the following structure (assuming that the Pipeline instance is called pipe):

Code to be executed in default mode

with pipe.worker_mode:
if pipe.is_controller:

Code to be executed in worker mode

More code to be executed in default mode

Note: All code that is inside the worker_mode context manager should solely be executed by the controller rank.
If not, all worker ranks will execute this code after the controller ranks exits the context manager. Currently, it is not
possible to make a context manager handle this automatically (the rejected PEP 377 describes this perfectly).

The _make_call() method accepts almost anything that can be called. It can also be used when not in
worker_mode, in which case it works the exact same way for all MPI ranks. Its sole limitation is that all sup-
plied arguments must be pickleable (e.g., compiled code objects are NOT pickleable due to safety reasons), both when
used in worker_mode and outside of it. The copyreg module can be used to register specific objects to become
pickleable (including compiled code objects).

The worker_mode can be used in a variety of ways, as described below. It can be used to access any attribute of the
Pipeline instance:

with pipe.worker_mode:
if pipe.is_controller:

Construct first emulator iteration
pipe._make_call('construct', 1)

Print latest constructed emulator iteration
print(pipe._make_call('emulator._get_emul_i', 1, 0))

Make a specific projection with the 'row' alignment
pipe._make_call('project', 1, (0, 1), align='row')

which is equivalent to:

Construct first emulator iteration
pipe.construct(1)

Print latest constructed emulator iteration
print(pipe.emulator._get_emul_i(1, 0))

Make a specific projection with the 'row' alignment
pipe.project(1, (0, 1), align='row')

The above two code snippets are equal to each other, and the worker_mode will most likely be used very rarely
in this fashion. However, by supplying the _make_call() method with a callable function (that can be pickled),
externally defined functions can be executed:

Enable worker mode
with pipe.worker_mode:

if pipe.is_controller:
Import print function that prepends MPI rank to message
from prism._internal import rprint

Make call to use this function
(continues on next page)

5.3. Dual nature (normal/worker mode) 31

https://www.python.org/dev/peps/pep-0377
https://docs.python.org/3/library/copyreg.html#module-copyreg

PRISM documentation

(continued from previous page)

Equivalent to 'rprint("Reporting in.")'
pipe._make_call(rprint, "Reporting in.")

This is especially useful when one combines a serial code with PRISM, but wants PRISM to execute in MPI. An
application example of this is Hybrid sampling.

Changed in version 1.2.0: It is also possible to make a call that is solely executed by the workers, by using the
_make_call_workers() method.

Changed in version 1.2.0: If any positional or keyword argument is a string written as ‘pipe.XXX’, it is assumed that
‘XXX’ refers to a Pipeline attribute of the MPI rank receiving the call. It will be replaced with the corresponding
attribute before exec_fn is called.

Changed in version 1.2.0: Initializing a worker mode within an already existing worker mode is possible and will
function properly. An example of this is using the construct() or crystal() method within worker mode, as
both use one themselves as well.

5.4 Hybrid sampling

A common problem when using MCMC methods is that it can often take a very long time for MCMC to find its way
on the posterior probability distribution function, which is often referred to as the burn-in phase. This is because,
when considering a parameter set, there is usually no prior information that this parameter set is (un)likely to result
into a desirable model realization. This means that such a parameter set must first be evaluated in the model before
any probabilities can be calculated. However, by constructing an emulator of the model, one can use it as an additional
prior for the posterior probability calculation. Therefore, although PRISM is primarily designed to make analyzing
models much more efficient and accessible than normal MCMC methods, it is also very capable of enhancing them.
This process is called hybrid sampling, which can be performed easily with the utils module and will be explained
below. Note that an interactive version of this section can be found in the tutorials.

5.4.1 Algorithm

Hybrid sampling allows one to use PRISM to first analyze a model’s behavior, and later use the gathered information to
speed up parameter estimations (by using the emulator as an additional prior in a Bayesian analysis). Hybrid sampling
works in the following way:

1. Whenever an MCMC walker proposes a new sample, it is first passed to the emulator of the model;

2. If the sample is not within the defined parameter space, it automatically receives a prior probability of zero (or
−∞ in case of logarithmic probabilities). Else, it will be evaluated in the emulator;

3. If the sample is labeled as implausible by the emulator, it also receives a prior probability of zero. If it is
plausible, the sample is evaluated in the same way as for normal sampling;

4. Optionally, a scaled value of the first implausibility cut-off is used as an exploratory method by adding an
additional (non-zero) prior probability. This can be enabled by using the impl_prior input argument for the
get_hybrid_lnpost_fn() function.

Since the emulator that PRISM makes of a model is not defined outside of the parameter space given by par_rng,
the second step is necessary to make sure the results are valid. There are several advantages of using hybrid sampling
over normal sampling:

• Acceptable samples are guaranteed to be within plausible space;

• This in turn makes sure that the model is only evaluated for plausible samples, which heavily reduces the number
of required evaluations;

32 Chapter 5. Using PRISM

https://github.com/1313e/PRISM/tree/master/tutorials/4_hybrid_sampling.ipynb

PRISM documentation

• No burn-in phase is required, as the starting positions of the MCMC walkers are chosen to be in plausible space;

• As a consequence, varying the number of walkers tends to have a much lower negative impact on the conver-
gence probability and speed;

• Samples with low implausibility values can optionally be favored.

5.4.2 Usage

In order to help the user with combining PRISM with MCMC to use hybrid sampling, the utilsmodule provides two
functions: get_walkers() and get_hybrid_lnpost_fn(). The get_walkers() function analyzes a set
of proposed init_walkers and returns the positions that are plausible (and the number of positions that are plausible).
By default, it uses the available impl_sam of the last constructed iteration, but it can also be supplied with a custom
set of proposed walkers or an integer stating how many proposed positions the function should check:

>>> # Use impl_sam if it is available
>>> n, p0 = get_walkers(pipe)

>>> # Request 2000 proposed samples
>>> n_walkers = 2000
>>> n, p0 = get_walkers(pipe, init_walkers=n_walkers)

>>> # Use custom init_walkers
>>> from e13tools.sampling import lhd
>>> init_walkers = lhd(n_walkers, pipe.modellink.n_par, pipe.modellink.par_rng)
>>> n, p0 = get_walkers(pipe, init_walkers=init_walkers)

>>> # Request 100 plausible starting positions (requires v1.1.4 or later)
>>> n, p0 = get_walkers(pipe, req_n_walkers=100)

As PRISM’s sampling methods operate in parameter space, the get_walkers() function automatically assumes
that all starting positions are defined in parameter space. However, as some sampling methods use unit space, nor-
malized starting positions can be requested by setting the unit_space input argument to True. One has to keep in
mind that, because of the way the emulator works, there is no guarantee for a specific number of plausible starting
positions to be obtained. Having the desired emulator iteration already analyzed may give an indication how many
starting positions in total need to be proposed to be left with a specific number.

Changed in version 1.2.0: It is now possible to request a specific number of plausible starting positions by using the
req_n_walkers input argument. This will use a custom Metropolis-Hastings sampling algorithm to obtain the required
number of starting positions, using the plausible samples in init_walkers as the start of every MCMC chain.

When the initial positions of the MCMC walkers have been determined, one can use them in an MCMC parameter
estimation algorithm, avoiding the burn-in phase. This in itself can already be very useful, but it does not allow for
hybrid sampling yet. Most MCMC methods require the definition of an lnpost() function, which takes a parameter
set and returns the corresponding natural logarithm of the posterior probability. In order to do hybrid sampling, this
lnpost() function must have the algorithm described above implemented.

The get_hybrid_lnpost_fn() function factory provides exactly that. It takes a user-defined lnpost() function
(as lnpost_fn) and a Pipeline object, and returns a function definition hybrid_lnpost(par_set, *args,

**kwargs). This hybrid_lnpost() function first analyzes a proposed par_set in the emulator, passes par_set (along
with any additional arguments) to lnpost() if the sample is plausible, or returns −∞ if it is not. The return-value of the
lnpost() function is then returned by the hybrid_lnpost() function as well. To make sure that the hybrid_lnpost() func-
tion can be used in both execution modes (see Dual nature (normal/worker mode)), all parallel calls to the Pipeline
object are done with the _make_call() method.

The use of a function factory here allows for all input arguments to be validated once and then saved as local variables
for the hybrid_lnpost() function. Not only does this avoid that all arguments have to be provided and validated for

5.4. Hybrid sampling 33

PRISM documentation

every individual call, but it also ensures that the same arguments are used every time, as local variables of a function
cannot be modified by anything. Since users most likely use get_walkers() and get_hybrid_lnpost_fn()
frequently together, the get_walkers() function allows for the lnpost_fn argument to be supplied to it. This
will automatically call the get_hybrid_lnpost_fn() function factory using the provided lnpost_fn and the
same input arguments given to get_walkers(), and return the obtained hybrid_lnpost() function in addition to the
starting positions of the MCMC walkers.

5.4.3 Application

Using the information above, using hybrid sampling on a model of choice can be done quite easily. For performing
the MCMC analysis, we will be using the emcee package in this example.

Assume that we want to first analyze and then optimize the Gaussian model given by the GaussianLink class. So,
we first have to make an emulator of the model:

>>> from prism import Pipeline
>>> from prism.modellink import GaussianLink
>>> model_data = {3: [3.0, 0.1], 5: [5.0, 0.1], 7: [3.0, 0.1]}
>>> modellink_obj = GaussianLink(model_data=model_data)
>>> pipe = Pipeline(modellink_obj)
>>> pipe.construct()

Using the constructed emulator, we can perform a model parameter optimization using hybrid sampling. For this, we
need to define an lnpost() function, for which we will use a simple Gaussian probability function:

def lnpost(par_set, pipe):
Create parameter dict for call_model
par_dict = dict(zip(pipe.modellink.par_name, par_set))

Use wrapped model to obtain model output
mod_out = pipe.modellink.call_model(pipe.emulator.emul_i,

par_dict,
pipe.modellink.data_idx)

Get the model and data variances
Since the value space is linear, the data error is centered
md_var = pipe.modellink.get_md_var(pipe.emulator.emul_i,

par_dict,
pipe.modellink.data_idx)

data_var = [err[0]**2 for err in pipe.modellink.data_err]

Calculate the posterior probability and return it
sigma_2 = md_var+data_var
diff = pipe.modellink.data_val-mod_out
return(-0.5*(np.sum(diff**2/sigma2)))

Since the Pipeline object already has the model wrapped and linked, we used that to evaluate the model. The
GaussianLink class has a centered data error, therefore we can take the upper bound for every error when calcu-
lating the variance. However, for more complex models, this is probably not true.

Next, we have to obtain the starting positions for the MCMC walkers. Since we want to do hybrid sampling, we can
obtain the hybrid_lnpost() function at the same time as well:

>>> from prism.utils import get_walkers
>>> n, p0, hybrid_lnpost = get_walkers(pipe, unit_space=False,

lnpost_fn=lnpost, impl_prior=True)

34 Chapter 5. Using PRISM

http://dfm.io/emcee/current

PRISM documentation

By setting impl_prior to True, we use the implausibility cut-off value as an additional prior. Now we only still need
the EnsembleSampler class and NumPy (for the lnpost() function):

>>> import numpy as np
>>> from emcee import EnsembleSampler

Now we have everything that is required to perform a hybrid sampling analysis. In most cases, MCMC methods
require to be executed on only a single MPI rank, so we will use the worker_mode:

Activate worker mode
with pipe.worker_mode:

if pipe.is_controller:
Create EnsembleSampler object
sampler = EnsembleSampler(n, pipe.modellink.n_par,

hybrid_lnpost, args=[pipe])

Run mcmc for 1000 iterations
sampler.run_mcmc(p0, 1000)

Execute any custom operations here
For example, saving the chain data or plotting the results

And that is basically all that is required for using PRISM together with MCMC. For a normal MCMC approach, the
same code can be used, except that one has to use lnpost() instead of hybrid_lnpost() (and, obtain the starting positions
of the walkers in a different way).

5.5 General usage rules

Below is a list of general usage rules that apply to PRISM.

• Unless specified otherwise in the documentation, any input argument in the PRISM package that accepts. . .

– a bool (True/False) also accepts 0/1 as a valid input;

– None indicates a default value or operation for obtaining this input argument. In most of these cases,
the default value depends on the current state of the PRISM pipeline, and therefore a small operation is
required for obtaining this value;

Example

Providing None to pot_active_par, where it indicates that all model parameters should be potentially
active.

– the names of model parameters also accepts the internal indices of these model parameters. The index is
the order in which the parameter names appear in the par_name list or as they appear in the output of the
details() method;

– a parameter/sample set will accept a 1D/2D array-like or a dict of sample(s). As with the previous rule,
the columns in an array-like are in the order in which the parameter names appear in the par_name list;

– a sequence of integers, floats and/or strings will accept (almost) any formatting including most special
characters as separators as long as they do not have any meaning (like a dot for floats or valid escape
sequences for strings). Keep in mind that providing ‘1e3’ (or equivalent) will be converted to 1000.0,
as per Python standards;

5.5. General usage rules 35

PRISM documentation

Example

The following sequences are equal:

* A, 1, 20.0, B;

* [A,1,2e1,B];

* “A 1 20. B”;

* “’[“ (A / }| \n; <1{}) ,,”>20.000000 !! \t<)?%\B ‘.

– the path to a data file (PRISM parameters, model parameters, model data) will read in all the data from that
file as a Python dict, with a colon : acting as the separator between the key and value.

• Depending on the used emulator type, state of loaded emulator and the PRISM parameter values, it is possible
that providing values for certain PRISM parameters has no influence on the outcome of the pipeline. This can
be either because they have non-changeable default values or are simply not used anywhere (given the current
state of the pipeline);

Examples

– If method != ‘gaussian’, it causes sigma to have no use in the pipeline;

– Switching the bool value for use_mock while loading a constructed emulator has no effect, since the
mock data is generated (or not) when constructing a new emulator and cannot be changed or swapped out
afterward.

• All docstrings in PRISM are written in RST (reStructuredText) and are therefore best viewed in an editor that
supports it (like Spyder);

• All class attributes that hold data specific to an emulator iteration, start with index 1 instead of index 0. So, for
example, to access the sample set that was used to construct iteration 1, one would use pipe.emulator.
sam_set[1] (given that the Pipeline object is called pipe).

5.6 External data files

When using PRISM, there are three different cases where the path to an external data file can be provided. As men-
tioned in General usage rules, all external files are read-in as a Python dict, with the colon being the separator between
the key and value. Additionally, all lines are read as strings and converted back when assigned in memory, to allow
for many different mark-ups to be used. Depending on which of the three files is read-in, the keys and values have
different meanings. Here, the three different files are described.

5.6.1 PRISM parameters file

This file contains the non-default values that must be used for the PRISM parameters. These parameters control
various different functionalities of PRISM. It is provided as the prism_par argument when initializing the Pipeline
class and stored in the prism_dict property (a dict or array-like can be provided instead as well). When certain
parameters are set depends on their type:

• Emulator parameters: Whenever a new emulator is created;

• Pipeline parameters: When the Pipeline class is initialized;

36 Chapter 5. Using PRISM

https://en.wikipedia.org/wiki/ReStructuredText
https://www.spyder-ide.org

PRISM documentation

• Implausibility parameters: When the analyze() method is called (saved to HDF5) or when an emulator
iteration is loaded that has not been analyzed yet (not saved to HDF5);

• Projection parameters: When the project() method is called.

The default PRISM parameters file can be found in the prism/data folder and is shown below:

n_sam_init : 500 # Number of initial model evaluation
→˓samples
proj_res : 25 # Number of projected grid points per
→˓model parameter
proj_depth : 250 # Number of emulator evaluation samples
→˓per projected grid point
base_eval_sam : 800 # Base number for growth in number of
→˓model evaluation samples
sigma : 0.8 # Gaussian sigma/standard deviation (only
→˓required if method == 'gaussian')
l_corr : 0.3 # Gaussian correlation length(s)
f_infl : 0.2 # Residual variance inflation factor
impl_cut : [0.0, 4.0, 3.8, 3.5] # List of implausibility cut-off values
criterion : None # Criterion for constructing LHDs
method : 'full' # Method used for constructing the
→˓emulator
use_regr_cov : False # Use regression covariance
poly_order : 3 # Polynomial order for regression
n_cross_val : 5 # Number of cross-validations for
→˓regression
do_active_anal : True # Perform active parameter analysis
freeze_active_par : True # Active parameters always stay active
pot_active_par : None # List of potentially active parameters
use_mock : False # Use mock data

In this file, the key is the name of the parameter that needs to be changed, and the value what it needs to be changed
to. PRISM itself does not require this default file, as all of the default values are hard-coded, and is therefore never
read-in. An externally provided PRISM parameters file is only required to have the non-default values. The contents
of this file is equal to providing the following as prism_par:

As a dict
prism_par = {'n_sam_init': 500,

'proj_res': 25,
'proj_depth': 250,
'base_eval_sam': 800,
'sigma': 0.8,
'l_corr': 0.3,
'impl_cut': [0.0, 4.0, 3.8, 3.5],
'criterion': None,
'method': 'full',
'use_regr_cov': False,
'poly_order': 3,
'n_cross_val': 5,
'do_active_anal': True,
'freeze_active_par': True,
'pot_active_par': None,
'use_mock': False}

As an array_like
prism_par = [['n_sam_init', 500],

['proj_res', 25],

(continues on next page)

5.6. External data files 37

PRISM documentation

(continued from previous page)

['proj_depth', 250],
['base_eval_sam', 800],
['sigma', 0.8],
['l_corr', 0.3],
['impl_cut', [0.0, 4.0, 3.8, 3.5]],
['criterion', None],
['method', 'full'],
['use_regr_cov', False],
['poly_order', 3],
['n_cross_val', 5],
['do_active_anal', True],
['freeze_active_par', True],
['pot_active_par', None],
['use_mock', False]]

Note that it is also possible to set any parameter besides Emulator parameters by using the corresponding class
property.

5.6.2 Model parameters file

This file contains the non-default model parameters to use for a model. It is provided as the model_parameters input
argument when initializing the ModelLink subclass (a dict or array-like can be provided instead as well). Keep in
mind that the ModelLink subclass may not have default model parameters defined.

An example of the various different ways model parameter information can be provided is given below:

name : lower_bndry upper_bndry estimate
A : 1 5 3
Bravo : 2 7 None
C42 : 3 6.74

In this file, the key is the name of the model parameter and the value is a sequence of integers or floats, specifying the
lower and upper boundaries of the parameter and, optionally, its estimate. Similarly to the PRISM parameters, one
can provide the following equivalent as model_parameters during initialization of a ModelLink subclass:

As a dict
model_parameters = {'A': [1, 5, 3],

'Bravo': [2, 7, None],
'C42': [3, 6.74]}

As an array_like
model_parameters = [['A', [1, 5, 3]],

['Bravo', [2, 7, None]],
['C42', [3, 6.74]]]

As two array_likes zipped
model_parameters = zip(['A', 'Bravo', 'C42'],

[[1, 5, 3], [2, 7, None], [3, 6.74]])

Providing None as the parameter estimate or not providing it at all, implies that no parameter estimate
(for the corresponding parameter) should be used in the projection figures. If required, one can use the
convert_parameters() function to validate their parameters formatting before using it to initialize a
ModelLink subclass.

38 Chapter 5. Using PRISM

PRISM documentation

5.6.3 Model data file

This file contains the non-default model comparison data points to use for a model. It is provided as the model_data
input argument when initializing the ModelLink subclass (a dict or array-like can be provided instead as well). Keep
in mind that the ModelLink subclass may not have default model comparison data defined.

An example of the various different ways model comparison data information can be provided is given below:

data_idx : data_val data_err data_spc
1, 2 : 1 0.05 0.05 'lin'
3.0 : 2 0.05 'log'
['A'] : 3 0.05 0.15
1, A, 1.0 : 4 0.05

Here, the key is the full sequence of the data identifier of a data point, where any character that is not a letter, number,
minus/plus or period acts as a separator between the elements of the data identifier. The corresponding value specifies
the data value, data error(s) and data value space. Braces, parentheses, brackets and many other characters can be used
as mark-up in the data identifier, to make it easier for the user to find a suitable file lay-out. A full list of all characters
that can be used for this can be found in prism.aux_char_set and can be freely edited.

Similarly to the model parameters, the following is equal to the contents of this file:

As a dict
model_data = {(1, 2): [1, 0.05, 0.05, 'lin'],

3.0: [2, 0.05, 'log'],
('A'): [3, 0.05, 0.15],
(1, 'A', 1.0): [4, 0.05]}

As an array_like
model_data = [[(1, 2), [1, 0.05, 0.05, 'lin']],

[3.0, [2, 0.05, 'log']],
[('A'), [3, 0.05, 0.15]],
[(1, 'A', 1.0), [4, 0.05]]]

As two array_likes zipped
model_data = zip([(1, 2), 3.0, ('A'), (1, 'A', 1.0)],

[[1, 0.05, 0.05, 'lin'], [2, 0.05, 'log'], [3, 0.05, 0.15], [4, 0.
→˓05]])

It is necessary for the data value to be provided at all times. The data error can be given as either a single value, where
it assumed that the data point has a centered 1𝜎-confidence interval, or as two values, where they describe the upper
and lower bounds of the 1𝜎-confidence interval. The data value space can be given as a string or omitted, in which case
it is assumed that the value space is linear. Keep in mind that, as mentioned in Data identifiers (data_idx), providing
a single element data identifier causes it to be saved as a scalar instead of a tuple. Therefore, [‘A’] or (‘A’) is the
same as ‘A’. If required, one can use the convert_data() function to validate their data formatting before using
it to initialize a ModelLink subclass.

Note: The parameter value bounds are given as [lower bound, upper bound], whereas the data errors are given as
[upper error, lower error]. The reason for this is that, individually, the order for either makes the most sense. Together
however, it may cause some confusion, so extra care needs to be taken.

5.6. External data files 39

PRISM documentation

40 Chapter 5. Using PRISM

CHAPTER 6

Descriptions

6.1 Terminology

Below is a list of the most commonly used terms/abbreviations in PRISM and their meaning.

Active emulator system An emulator system that has a data point assigned to it.

Active parameters The set of model parameters that are considered to have significant influence on the output of the
model and contribute at least one polynomial term to one/the regression function.

Adjusted expectation The prior expectation of a parameter set, with the adjustment term taken into account. It is
equal to the prior expectation if the emulator system has perfect accuracy.

Adjusted values The adjusted expectation and variance values of a parameter set.

Adjusted variance The prior variance of a parameter set, with the adjustment term taken into account. It is zero if
the emulator system has perfect accuracy.

Adjustment term The extra term (as determined by the BLA) that is added to the prior expectation and variance
values that describes all additional correlation knowledge between model realization samples.

Analysis

Analyze The process of evaluating a set of emulator evaluation samples in the last emulator iteration and determining
which samples should be used to construct the next iteration.

BLA Abbreviation of Bayes linear approach.

Construct

Construction The process of calculating all necessary components to describe an iteration of the emulator.

Construction check A list of keywords determining which components of which emulator systems are still required
to finish the construction of a specified emulator iteration.

Controller

41

PRISM documentation

Controller rank An MPI process that controls the flow of operations in PRISM and distributes work to all workers
and itself. By default, a controller also behaves like a worker, although is not identified as such.

Covariance matrix

Inverted covariance matrix The (inverted) matrix of prior covariances between all model realization samples and
itself.

Covariance vector The vector of prior covariances between all model realization samples and a given parameter set.

Data error The 1𝜎-confidence interval of a model comparison data point, often a measured/calculated observational
error.

Data identifier

Data point identifier The unique identifier of a model comparison data point, often a sequence of integers, floats and
strings that describe the operations required to extract it.

Data point A collection of all the details (value, error, space and identifier) about a specific model comparison data
point that is used to constrain the model with.

Data space

Data value space The value space (linear, logarithmic or exponential) in which a model comparison data point is
defined.

Data value The value of a model comparison data point, often an observed/measured value.

Emulation method The specific method (Gaussian, regression or both) that needs to be used to construct an emulator.

Emulator The collection of all emulator systems together, provided by an Emulator object.

Emulator evaluation samples The sample set (to be) used for evaluating the emulator.

Emulator iteration

Iteration A single, specified step in the construction of the emulator.

Emulator system The emulated version of a single model output/comparison data point in a single iteration.

Emulator type The type of emulator that needs to be constructed. This is used to make sure different emulator types
are not mixed together by accident.

Evaluate

Evaluation The process of calculating the adjusted values of a parameter set in all emulator systems starting at
the first iteration, determining the corresponding implausibility values and performing an implausibility check.
This process is repeated in the next iteration if the check was successful and the requested iteration has not been
reached.

External model realization set A set of externally calculated and provided model realization samples and their out-
puts.

Frozen parameters

Frozen active parameters The set of model parameters that, once considered active, will always stay active if possi-
ble.

FSLR Abbreviation of forward stepwise linear regression.

Gaussian correlation length The maximum distance between two values of a specific model parameter within which
the Gaussian contribution to the correlation between the values is still significant.

Gaussian sigma The standard deviation of the Gaussian function. It is not required if regression is used.

HDF5 Abbreviation of Hierarchical Data Format version 5.

42 Chapter 6. Descriptions

PRISM documentation

Hybrid sampling The process of performing a best parameter estimation of a model with MCMC sampling, while
using its emulator as an additional Bayesian prior. This process is explained in Hybrid sampling.

Implausibility check

Implausibility cut-off check The process of determining whether or not a given set of implausibility values satisfy
the implausibility cut-offs of a specific emulator iteration.

Implausibility cut-offs The maximum implausibility values an evaluated parameter set is allowed to generate, to be
considered plausible in a specific emulator iteration.

Implausibility value

Univariate implausibility value The minimum 𝜎-confidence level (standard deviations) that the real model realiza-
tion cannot explain the comparison data. It takes into account all variances associated with the parameter set,
which are the observational variance (given by data_err), adjusted emulator variance (adj_var) and the model
discrepancy variance (md_var).

Implausibility wildcard A maximum implausibility value, preceding the implausibility cut-offs, that is not taken into
account during the implausibility cut-off check. It is denoted as 0 in provided implausibility parameters lists.

LHD Abbreviation of Latin-Hypercube design.

Master file

Master HDF5 file (Path to) The HDF5-file in which all important data about the currently loaded emulator is stored.
A master file is usually accompanied by several emulator system (HDF5) files, which store emulator system
specific data and are externally linked to the master file.

MCMC Abbreviation of Markov chain Monte Carlo.

Mock data The set of comparison data points that has been generated by evaluating the model for a random parameter
set and perturbing the output by the model discrepancy variance.

Model A black box that takes a parameter set, performs a sequence of operations and returns a unique collection of
values corresponding to the provided parameter set.

Note: This is how PRISM ‘sees’ a model, not the used definition of one.

2D model A model that has/takes 2 model parameters.

2+D model

nD model A model that has/takes more than 2 model parameters.

ModelLink

ModelLink subclass The user-provided wrapper around the model that needs to be emulated, provided by a
ModelLink object.

Model data The set of all data points that are provided to a ModelLink subclass, to be used to constrain the model
with.

Model discrepancy variance A user-defined value that includes all contributions to the overall variance on a model
output that is created/caused by the model itself. More information on this can be found in Model discrepancy
variance (md_var).

Model evaluation samples The sample set (to be) used for evaluating the model.

Model output

Model outputs The model output(s) corresponding to a single (set of) model realization/evaluation sample(s).

Model parameter

6.1. Terminology 43

PRISM documentation

Model parameters The (set of) details about every (all) degree(s)-of-freedom that a model has and whose value
range(s) must be explored by the emulator.

Model realization samples Same as model evaluation samples.

Model realizations

Model realization set The combination of model realization/evaluation samples and their corresponding model out-
puts.

MPI Abbreviation of Message Passing Interface.

MPI rank An MPI process that is used by any PRISM operation, either being a controller or a worker.

MSE Abbreviation of mean squared error.

OLS Abbreviation of ordinary least-squares.

Parameter set

Sample A single combination/set of model parameter values, used to evaluate the emulator/model once.

Passive parameters The set of model parameters that are not considered active, and therefore are considered to not
have a significant influence on the output of the model.

Pipeline

PRISM Pipeline The main PRISM framework that orchestrates all operations, provided by a Pipeline object.

Plausible region The region of model parameter space that still contains plausible samples.

Plausible samples A subset of a set of emulator evaluation samples that satisfied the implausibility checks.

Polynomial order Up to which order polynomial terms need to be taken into account for all regression processes.

Potentially active parameters A user-provided set of model parameters that are allowed to become active. Any
model parameter that is not potentially active will never become active, even if it should.

PRISM The acronym for Probabilistic Regression Instrument for Simulating Models. It is also a one-word description
of what PRISM does (splitting up a model into individually emulated model outputs).

Prior covariance The covariance value between two parameter sets as determined by an emulator system.

Prior expectation The expectation value of a parameter set as determined by an emulator system, without taking
the adjustment term (from the BLA) into account. It is a measure of how much information is captured by an
emulator system. It is zero if regression is not used, as no information is captured.

Prior variance The variance value of a parameter set as determined by an emulator system, without taking the ad-
justment term (from the BLA) into account.

Project

Projection The process of analyzing a specific set of active parameters in an iteration to determine the correlation
between the parameters.

Projection figure The visual representation of a projection.

Regression The process of determining the important polynomial terms of the active parameters and their coefficients,
by using an FSLR algorithm.

Regression covariances The covariances between all polynomial coefficients of the regression function. By default,
they are not calculated and it is empty if regression is not used.

Residual variance The variance that has not been captured during the regression process. It is empty if regression is
not used.

44 Chapter 6. Descriptions

PRISM documentation

Root directory (Path to) The directory/folder on the current machine in which all PRISM working directories are
located. It also acts as the base for all relative paths.

Sample set

Evaluation set A set of samples.

Worker

Worker rank An MPI process that receives its calls/orders from a controller and performs the heavy-duty operations
in PRISM.

Working directory (Path to) The directory/folder on the current machine in which the PRISM master file, log-file
and all projection figures of the currently loaded emulator are stored.

Worker mode A mode initialized by worker_mode, where all workers are continuously listening for calls made by
the controller rank and execute the received messages. This allows for serial codes to be combined more easily
with PRISM. See Dual nature (normal/worker mode) for more information.

6.2 PRISM parameters

Below are descriptions of all the parameters that can be provided to PRISM in a text-file when initializing the
Pipeline class (using the prism_par input argument).

Changed in version 1.1.2: Input argument prism_file was renamed to prism_par. A dictionary with PRISM parameters
instead of a file can additionally be provided to the Pipeline class. All Pipeline parameters can also be changed
by setting the corresponding class property.

n_sam_init (Default: 500) Number of model evaluation samples that is used to construct the first iteration of the
emulator. This value must be a positive integer.

proj_res (Default: 25) Number of emulator evaluation samples that is used to generate the grid for the projection
figures (it defines the resolution of the projection). This value must be a positive integer.

proj_depth (Default: 250) Number of emulator evaluation samples that is used to generate the samples in every
projected grid point (it defines the accuracy/depth of the projection). This value must be a positive integer.

base_eval_sam (Default: 800) Base number of emulator evaluation samples that is used to analyze an iteration
of the emulator. It is multiplied by the iteration number and the number of model parameters to generate the
true number of emulator evaluations, in order to ensure an increase in emulator accuracy. This value must be a
positive integer.

sigma (Default: 0.8) The Gaussian sigma/standard deviation that is used when determining the Gaussian contribu-
tion to the overall emulator variance. This value is only required when method == ‘gaussian’, as the
Gaussian sigma is obtained from the residual variance left after the regression optimization if regression is
included. This value must be non-zero.

l_corr (Default: 0.3) The normalized amplitude(s) of the Gaussian correlation length. This number is multiplied
by the difference between the upper and lower value boundaries of the model parameters to obtain the Gaussian
correlation length for every model parameter. This value must be positive, normalized and either a scalar or a
list of n_par scalars (where the values correspond to the sorted list of model parameters).

f_infl (Default: 0.2) New in version 1.2.2.

The residual variance inflation factor. The variance values for all known samples in an emulator iteration are
inflated by this number multiplied by rsdl_var. This can be used to adjust for the underestimation of the
emulator variance. Setting this to zero causes no variance inflation to be performed. This value must be non-
negative.

6.2. PRISM parameters 45

PRISM documentation

impl_cut (Default: [0.0, 4.0, 3.8, 3.5]) A list of implausibility cut-off values that specifies the maximum implausi-
bility values a parameter set is allowed to have to be considered ‘plausible’. A zero can be used as a filler value,
either taking on the preceding value or acting as a wildcard if the preceding value is a wildcard or non-existent.
Zeros are appended at the end of the list if the length is less than the number of comparison data points, while
extra values are ignored if the length is more. This must be a sorted list of positive values (excluding zeros).

criterion (Default: None) The criterion to use for determining the quality of the LHDs that are used, represented
by an integer, float, string or None. This parameter is the only non-PRISM parameter. Instead, it is used in the
lhd()-function of the e13Tools package. By default, None is used.

method (Default: ‘full’) The method to use for constructing the emulator. ‘gaussian’ will only include Gaus-
sian processes (no regression), which is much faster, but also less accurate. ‘regression’ will only include
regression processes (no Gaussian), which is more accurate than Gaussian only, but underestimates the emulator
variance by multiple orders of magnitude. ‘full’ includes both Gaussian and regression processes, which is
slower than Gaussian only, but by far the most accurate both in terms of expectation and variance values.

‘gaussian’ can be used for faster exploration especially for simple models. ‘regression’ should only
be used when the polynomial representation of a model is important and enough model realizations are available.
‘full’ should be used by default.

Warning: When using PRISM on a model that can be described completely by the regression func-
tion (anything that has an analytical, polynomial form up to order poly_order like a straight line or a
quadratic function), use the ‘gaussian’ method unless unavoidable (in which case n_sam_init and
base_eval_sam must be set to very low values).

When using the regression method on such a model, PRISM will be able to capture the behavior of the model
perfectly given enough samples, in which case the residual (unexplained) variance will be approximately
zero and therefore sigma as well. This can occassionally cause floating point errors when calculating
emulator variances, which in turn can give unexplainable artifacts in the adjustment terms, therefore causing
answers to be incorrect.

Since PRISM’s purpose is to identify the characteristics of a model and therefore it does not know anything
about its workings, it is not possible to automatically detect such problems.

use_regr_cov (Default: False) Whether or not the regression variance should be taken into account for the vari-
ance calculations. The regression variance is the variance on the regression process itself and is only significant
if a low number of model realizations (n_sam_init and base_eval_sam) is used to construct the emulator
systems. Including it usually only has a very small effect on the overall variance value, while it can slow down
the emulator evaluation rate by as much as a factor of 3. This value is not required if method == ‘gaussian’
and is automatically set to True if method == ‘regression’. This value must be a bool.

poly_order (Default: 3) Up to which order all polynomial terms of all model parameters should be included in
the active parameters and regression processes. This value is not required if method == ‘gaussian’ and
do_active_anal is False. This value must be a positive integer.

n_cross_val (Default: 5) Number of (k-fold) cross-validations that must be used for determining the quality of
the active parameters analysis and regression process fits. If this parameter is zero, cross-validations are not
used. This value is not required if method == ‘gaussian’ and do_active_anal is False. This value
must be a non-negative integer and not equal to 1.

do_active_anal (Default: True) Whether or not an active parameters analysis must be carried out for every
iteration of every emulator system. If False, all potentially active parameters listed in pot_active_par
will be active. This value must be a bool.

freeze_active_par (Default: True) Whether or not active parameters should be frozen in their active state. If
True, parameters that have been considered active in a previous iteration of an emulator system, will automat-
ically be active again (and skip any active parameters analysis). This value must be a bool.

46 Chapter 6. Descriptions

https://github.com/1313e/e13Tools

PRISM documentation

pot_active_par (Default: None) A list of parameter names that indicate which parameters are potentially active.
Potentially active parameters are the only parameters that will enter the active parameters analysis (or will all be
active if do_active_anal is False). Therefore, all parameters not listed will never be considered active.
If all parameters should be potentially active, then a None can be given. This must either be a list of parameter
names or None.

use_mock (Default: False) Whether or not mock data must be used as comparison data when constructing a new
emulator. Mock data is calculated by evaluating the model for a specific set of parameter values, and adding
the model discrepancy variances as noise to the returned data values. This set of parameter values is either the
provided set, or a randomly chosen one if not. When using mock data for an emulator, it is not possible to
change the comparison data in later emulator iterations. This value must be a bool or a list of n_par scalars
(where the values correspond to the sorted list of model parameters).

6.3 HDF5

Whenever PRISM constructs an emulator, it automatically stores all the calculated data for it in an HDF5-file named
'prism.hdf5' in the designated working directory. This file contains all the data that is required in order to
recreate all emulator systems that have been constructed for the emulator belonging to this run. If the Pipeline
class is initialized by using an HDF5-file made by PRISM, it will load in this data and return a Pipeline object in
the same state as described in the file.

Below is a short overview of all the data that can be found inside a PRISM master HDF5-file. HDF5-files can be
viewed freely by the user using the HDFView application made available by The HDFGroup.

The general file contains:

• Attributes (11/12): Describe the general non-changeable properties of the emulator, which include:

– Emulator type and method;

– Gaussian parameters;

– Name of used ModelLink subclass;

– Used PRISM version;

– Regression parameters;

– Bools for using mock data or regression covariance;

– Mock data parameters if mock data was used.

• Every emulator iteration has its own data group with the iteration number as its name. This data group
stores all data/information specific to that iteration.

An iteration data group ('i') contains:

• Attributes (9): Describe the general properties and results of this iteration, including:

– Active parameters for this emulator iteration;

– Implausibility cut-off parameters;

– Number of emulated data points, emulator systems, emulator evaluation samples, plausible samples
and model realization samples;

– Bool stating whether this emulator iteration used an external model realization set.

6.3. HDF5 47

https://portal.hdfgroup.org/display/HDF5/HDF5
https://portal.hdfgroup.org/display/HDFVIEW/HDFView
https://portal.hdfgroup.org

PRISM documentation

• 'emul_n': The data group that contains all data for a specific emulator system in this iteration. The
value of 'n' indicates which emulator system it is, not the data point. See below for its contents;

• 'emul_space': The boundaries of the hypercube that encloses the parameter space in which this itera-
tion is defined. This is always equal to the plausible space of the previous iteration;

• 'impl_sam': The set of emulator evaluation samples that survived the implausibility checks and will be
used to construct the next iteration;

• 'proj_hcube': The data group that contains all data for the (created) projections for this iteration, if at
least one has been made. See below for its contents;

• 'sam_set': The set of model realization samples that were used to construct this iteration. In every
iteration after the first, this is the 'impl_sam' of the previous iteration;

• 'statistics': An empty data set that stores several different types of statistics as its attributes, in-
cluding:

– Size of the MPI communicator during various construction steps;

– Average evaluation rate/time of the emulator and model;

– Total time cost of most construction steps (note that this value may be incorrect if a construction was
interrupted);

– Percentage of parameter space that is still plausible within the iteration.

An emulator system data group ('i/emul_n') contains:

• Attributes (7+): List the details about the model comparison data point used in this emulator system,
including:

– Active parameters for this emulator system;

– Data errors, identifiers, value space and value;

– Regression score and residual variance if regression was used;

– The active and passive contributions to the residual variance (obtained from either the regression
residual variance or the Gaussian sigma).

• 'cov_mat': The pre-calculated covariance matrix of all model evaluation samples in this emulator sys-
tem. This data set is never used in PRISM and stored solely for user-convenience;

• 'cov_mat_inv': The pre-calculated inverse of 'cov_mat';

• 'exp_dot_term': The pre-calculated second expectation adjustment dot-term (Var (𝐷)
−1 ·

(𝐷 − E(𝐷))) of all model evaluation samples in this emulator system.

• 'mod_set': The model outputs for the data point in this emulator system corresponding to the
'sam_set' used in this iteration;

• 'poly_coef' (if regression is used): The non-zero coefficients for the polynomial terms in the regres-
sion function in this emulator system;

• 'poly_coef_cov' (if regression and regr_cov are used): The covariances for all polynomial coeffi-
cients 'poly_coef';

• 'poly_idx' (if regression is used): The indices of the polynomial terms with non-zero coefficients if
all active parameters are converted to polynomial terms;

• 'poly_powers' (if regression is used): The powers of the polynomial terms corresponding to
'poly_idx'. Both 'poly_idx' and 'poly_powers' are required since different methods of cal-
culating the polynomial terms are used depending on the number of required terms and samples;

48 Chapter 6. Descriptions

PRISM documentation

• 'prior_exp_sam_set': The pre-calculated prior expectation values of all model evaluation samples
in this emulator system. This data set is also never used in PRISM.

A projections data group ('i/proj_hcube') contains individual projection data groups ('i/proj_hcube/<name>'), which contain:

• Attributes (4): List the general properties with which this projection was made, including:

– Implausibility cut-off parameters (they can differ from the iteration itself);

– Projection depth and resolution.

• 'impl_los': The calculated line-of-sight depth for all grid points in this projection;

• 'impl_min': The calculated minimum implausibility values for all grid points in this projection;

• 'proj_space': The boundaries of the hypercube that encloses the defined parameter space of this
projection.

6.3. HDF5 49

PRISM documentation

50 Chapter 6. Descriptions

CHAPTER 7

FAQ

7.1 How do I contribute?

Contributing to PRISM is done through pull requests in the repository. If you have an idea on what to contribute, it is
recommended to open a GitHub issue about it, such that the maintainers can give their advice or help. If you want to
contribute but do not really know what, then you can take a look at the ToDos that are scattered throughout the code.
When making a contribution, please keep in mind that it must be compatible with all Python versions that PRISM
supports (3.5+), and preferably with all operating systems as well.

7.2 How do I report a bug/problem?

By opening a GitHub issue and using the Bug report template.

7.3 What does the term . . . mean?

A list of the most commonly used terms in PRISM can be found on the Terminology page.

7.4 Where can I get PRISM’s colormaps?

The rainforest and freeze colormaps that are used for drawing PRISM’s projection figures, are freely available in
the e13Tools package. Importing e13Tools will automatically add both colormaps (and their reverses) to the list of
available colormaps in Matplotlib. One can then access them directly in the cm module or by using the get_cmap()
function. More information on the colormaps in e13Tools can be found in its documentation.

51

https://github.com/1313e/PRISM
https://github.com/1313e/PRISM/issues
https://github.com/1313e/PRISM/issues
https://github.com/1313e/e13Tools
https://matplotlib.org/api/cm_api.html#module-matplotlib.cm
https://matplotlib.org/api/cm_api.html#matplotlib.cm.get_cmap
https://e13tools.readthedocs.io/en/latest/user/colormaps.html

PRISM documentation

7.5 Which OSs are supported?

PRISM should be compatible with all Windows, Mac OS and UNIX-based machines, as long as they support one of
the required Python versions. Compatibility is currently tested for Linux 16.04 (Xenial)/Mac OS-X using Travis CI,
Windows 32-bit/64-bit using AppVeyor and all OSs using Azure Pipelines.

52 Chapter 7. FAQ

https://travis-ci.com/1313e/PRISM
https://ci.appveyor.com/project/1313e/PRISM
https://dev.azure.com/1313e/PRISM/_build/latest?definitionId=1

CHAPTER 8

Community guidelines

PRISM is an open-source and free-to-use software package (and it always will be), provided under the BSD-3 license
(see below for the full license).

Users are highly encouraged to make contributions to the package or request new features by opening a GitHub issue.
If you would like to contribute to the package, but do not know what, then there are quite a few ToDos in the code
that may give you some inspiration. As with contributions, if you find a problem or issue with PRISM, please do not
hesitate to open a GitHub issue about it or post it on Gitter.

And, finally, if you use PRISM as part of your workflow in a scientific publication, please consider including an
acknowledgement like “Parts of the results in this work were derived using the PRISM Python package.” and citing
the PRISM pipeline paper using the BibTeX-entry below.

8.1 License

BSD 3-Clause License

Copyright (c) 2019-2020, Ellert van der Velden
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

(continues on next page)

53

https://github.com/1313e/PRISM/issues
https://github.com/1313e/PRISM/issues
https://gitter.im/1313e/PRISM

PRISM documentation

(continued from previous page)

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

8.2 Citation

This BibTeX-entry is also available in PRISM using get_bibtex() (available as :pycode:‘prism.get_bibtex()‘).

@ARTICLE{2019ApJS..242...22V,
author = {{van der Velden}, Ellert and {Duffy}, Alan R. and {Croton}, Darren and

{Mutch}, Simon J. and {Sinha}, Manodeep},
title = "{Model Dispersion with PRISM: An Alternative to MCMC for Rapid Analysis

→˓of Models}",
journal = {\apjs},

keywords = {methods: data analysis, methods: numerical,
Astrophysics - Instrumentation and Methods for Astrophysics, Physics -

→˓Computational Physics},
year = 2019,

month = jun,
volume = {242},
number = {2},

eid = {22},
pages = {22},

doi = {10.3847/1538-4365/ab1f7d},

archivePrefix = {arXiv},

eprint = {1901.08725},

primaryClass = {astro-ph.IM},

adsurl = {https://ui.adsabs.harvard.edu/abs/2019ApJS..242. . . 22V},

adsnote = {Provided by the SAO/NASA Astrophysics Data System}

}

8.3 Additions

Below are some bigger ideas/improvements that may be added to PRISM if there is demand:

• Add a developer’s guide to the docs, describing the inner workings and structures of PRISM;

• Low-level MPI implementation (probably by using D2O);

With 6 emulator systems and 4 processes, the three different MPI levels would be:

– No level: 6-0-0-0;

54 Chapter 8. Community guidelines

https://ui.adsabs.harvard.edu/abs/2019ApJS..242...22V

PRISM documentation

– High-level: 2-2-1-1;

– Low-level: 1.5-1.5-1.5-1.5.

• Dynamic implausibility cut-offs;

• Allow for a master projection figure to be made (kind of like a double corner plot);

• Allow for user-provided methods in the ModelLink subclass to be executed at specific points in the emulator
construction;

• Implement multi-variate implausibilities;

• Allow for no ModelLink object to be provided, which blocks construction but enables everything emulator-
only related;

• Allow for old PRISM master files to be provided when making a new emulator, recycling work done previously;

• If MPI_call is False for the ModelLink subclass, use all MPI ranks to evaluate a part of sam_set in
the model simultaneously. This will require a check or flag that the model can be called in multiple instances
simultaneously (to accommodate for models that, for example, need to read files during evaluations). Added
benefit of this is that it would become possible to add the option for the user to set a preferred number of MPI
processes calling the model (in MPI), allowing PRISM to split up the available processes if more efficient;

• GPU acceleration;

• Adding the theory behind PRISM to the docs;

• Adding the possibility to evaluate the derivatives of the emulated model outputs, which could be used as ap-
proximations of the gradient field of a model for certain MCMC methods;

• Replace the list of lists data system with a list of dicts system. This would remove the need for converting global
indices to/from local indices in several cases, and make it easier for users to understand. However, as indexing
dicts is more complicated, this may require a lot of rewriting;

• Code objects can be made pickleable by importing the codeutil module. This package could be added to the
requirements or an equivalent function could be written, which is then automatically imported/executed upon
importing PRISM;

8.3. Additions 55

PRISM documentation

56 Chapter 8. Community guidelines

CHAPTER 9

Pipeline

class prism.Pipeline(modellink_obj, *, root_dir=None, working_dir=None, prefix=None,
prism_par=None, emul_type=None, comm=None, **kwargs)

Defines the Pipeline class of the PRISM package.

The Pipeline class is the main user class of the PRISM package and provides a user-friendly environment
that gives access to all operations within the pipeline.

_Projection__analyze_proj_hcube(hcube)
Analyzes an emulator projection hypercube hcube.

Parameters hcube (1D array_like of int of length {2, 3}) – Array containing the internal integer
identifiers of the main model parameters that require a projection hypercube.

Returns

• impl_min_hcube (1D ndarray object) – List containing the lowest implausibility value
that can be reached in every single grid point on the given hypercube.

• impl_los_hcube (1D ndarray object) – List containing the fraction of the total amount
of evaluated samples in every single grid point on the given hypercube, that still satisfied
the implausibility cut-off criterion.

_Projection__draw_2D_proj_fig(hcube)
Draws the 2D projection figure for the provided hcube.

Parameters hcube (1D array_like of int of length 2) – Array containing the internal integer
identifiers of the main model parameters that require a projection figure.

_Projection__draw_3D_proj_fig(hcube)
Draws the 3D projection figure for the provided hcube.

Parameters hcube (1D array_like of int of length 3) – Array containing the internal integer
identifiers of the main model parameters that require a projection figure.

_Projection__get_default_input_arguments()
Generates a dict containing default values for all input arguments.

Returns kwargs_dict (dict) – Dict containing all default input argument values.

57

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

_Projection__get_default_parameters()
Generates a dict containing default values for all projection parameters.

Returns par_dict (dict) – Dict containing all default projection parameter values.

_Projection__get_fig_path(hcube)
Determines the absolute path of a projection figure corresponding to a provided projection hypercube
hcube and returns it.

Parameters hcube (1D array_like of int of length {2, 3} or str) – Array containing the internal
integer identifiers of the main model parameters that require a projection hypercube. If str,
the name of hcube instead (_Projection__get_hcube_name()).

Returns

• fig_path (str) – The absolute path to the requested projection figure.

• fig_path_s (str) – The absolute path to the smoothed version.

_Projection__get_grid_idx(hcube)
Returns the indices of all parameters that are in the grid points of the given projection hypercube hcube.

Parameters hcube (1D array_like of int of length {2, 3}) – Array containing the internal integer
identifiers of the main model parameters that require a projection hypercube.

Returns grid_idx (list of int) – Indices of all grid point parameters.

_Projection__get_hcube_name(hcube)
Determines the name of a provided projection hypercube hcube and returns it.

Parameters hcube (1D array_like of int of length {2, 3}) – Array containing the internal integer
identifiers of the main model parameters that require a projection hypercube.

Returns hcube_name (str) – The name of this projection hypercube.

_Projection__get_proj_data(hcube)
Returns the projection data belonging to the provided hypercube hcube.

Parameters hcube (1D array_like of int of length {2, 3}) – Array containing the internal integer
identifiers of the main model parameters that require a projection hypercube.

Returns

• impl_min_hcube (1D ndarray object) – List containing the lowest implausibility value
that can be reached in every single grid point on the given hypercube.

• impl_los_hcube (1D ndarray object) – List containing the fraction of the total amount
of evaluated samples in every single grid point on the given hypercube, that still satisfied
the implausibility cut-off criterion.

• proj_res (int) – Number of emulator evaluations used to generate the grid for the given
hypercube.

• proj_depth (int) – Number of emulator evaluations used to generate the samples in every
grid point for the given hypercube.

• proj_space (2D ndarray object) – The boundaries of the hypercube that encloses the
parameter space in which the specified projection is defined.

_Projection__get_proj_hcube(hcube)
Generates a projection hypercube hcube containing emulator evaluation samples The output of this func-
tion depends on the requested projection type.

Parameters hcube (1D array_like of int of length {2, 3}) – Array containing the internal integer
identifiers of the main model parameters that require a projection hypercube.

58 Chapter 9. Pipeline

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

Returns proj_hcube (3D ndarray object) – 3D projection hypercube of emulator evaluation
samples. For 3D projections, the grid uses matrix indexing (second parameter varies the
fastest).

_Projection__get_proj_space(emul_i)
Returns the boundaries of the hypercube that encloses the parameter space in which the projection space
of the provided emulator iteration emul_i is defined.

Parameters emul_i (int) – Number indicating the requested emulator iteration.

Returns proj_space (2D ndarray object) – The requested hypercube boundaries.

_Projection__get_req_hcubes(emul_i, proj_par)
Determines which projection hypercubes have been requested by the user. Also checks if these projection
hypercubes have been calculated before, and depending on the value of force, either skips them or
recreates them.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• proj_par (1D array_like of {int; str} or None) – For which model parameters to construct
the projection figures. If 1D array_like, construct projection figures for all combinations
of provided model parameters that are active, with a string referring to the name of the
model parameter and an integer referring to the position in which the model parameter
is shown in the details() method. If None, projection figures are made for all active
model parameters.

Generates

hcubes [list of lists] List containing the parameter indices of the requested projection hypercubes.

create_hcubes [list of lists] List containing the parameter indices of the requested projection hypercubes
that need to be created first.

_Projection__prepare_projections(emul_i, proj_par, **kwargs)
Prepares the pipeline for the creation of the requested projections.

Parameters

• emul_i (int or None) – Number indicating the requested emulator iteration.

• proj_par (1D array_like of {int; str} or None) – For which model parameters to construct
the projection figures. If 1D array_like, construct projection figures for all combinations
of provided model parameters that are active, with a string referring to the name of the
model parameter and an integer referring to the position in which the model parameter
is shown in the details() method. If None, projection figures are made for all active
model parameters.

• kwargs (keyword arguments) – Keyword arguments that were provided to project().

_Projection__process_input_arguments(emul_i, **kwargs)
Processes the input arguments given to the project() method.

Parameters

• emul_i (int or None) – Number indicating the requested emulator iteration.

• kwargs (keyword arguments) – Keyword arguments that were provided to project().

59

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

Generates

All default and provided arguments are saved to their respective properties.

_Projection__read_proj_space(hcube_group)
Reads in and transforms the projection parameter space hypercube that is stored in the provided
hcube_group.

Parameters hcube_group (Group object) – The HDF5-group from which the projection pa-
rameter space hypercube needs to be read in.

Returns proj_space (2D ndarray object) – The read-in hypercube boundaries.

_Projection__save_data(emul_i, data_dict)
Saves a given data dict {keyword: data} at the emulator iteration this class was initialized for, to
the HDF5-file.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• data_dict (dict) – Dict containing the data that needs to be saved to the HDF5-file.

Keyword Arguments

• keyword ({‘nD_proj_hcube’}) – String specifying the type of data that needs to be saved.

• data ({int; float; str; array_like} or dict) – The actual data that needs to be saved at data
keyword keyword. If dict, save every item individually.

Generates

The specified data is saved to the HDF5-file.

_Projection__set_parameters()
Sets the Projection parameters from the prism_dict property and saves them in the current
Projection instance.

__call__(emul_i=None, *, force=False)
Calls the construct()method to start the construction of the given iteration of the emulator and creates
the projection figures right afterward if this construction was successful.

Other Parameters

• emul_i (int or None. Default: None) – If int, number indicating the requested emulator
iteration. If None, the next iteration of the emulator will be constructed.

• force (bool. Default: False) – Controls what to do if the specified emulator iteration
emul_i already (partly) exists. If False, finish construction of the specified iteration or skip
it if already finished. If True, reconstruct the specified iteration entirely.

__init__(modellink_obj, *, root_dir=None, working_dir=None, prefix=None, prism_par=None,
emul_type=None, comm=None, **kwargs)

Initialize an instance of the Pipeline class.

Parameters modellink_obj (ModelLink object) – Instance of the ModelLink subclass that
links the emulated model to this Pipeline instance.

Other Parameters

• root_dir (str or None. Default: None) – String containing the absolute path of the root
directory where all working directories are stored. If None, root directory will be set to the
directory this class was initialized in.

60 Chapter 9. Pipeline

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

• working_dir (str, bool or None. Default: None) – String containing the name of the
working directory of the emulator in root_dir. If True, a new working directory will be
created in root_dir. If None or False, working directory is set to the last one that was
created in root_dir that starts with the given prefix. Note that providing an integer instead
of a bool will not work here. If no directories are found, one will be created.

• prefix (str or None. Default: None) – String containing a prefix that is used for naming
new working directories or scan for existing ones. If None, all directories in root_dir are
considered working directories and ‘prism_’ will be used as a prefix for new ones.

• prism_par (array_like, dict, str or None. Default: None) – A dict containing the values
for the PRISM parameters that need to be changed from their default values. If array_like,
dict(prism_par) must generate a dict with the correct lay-out. If str, the string is the abso-
lute or relative path to the file that contains the keys in the first column and the dict values
in the second column. If a relative path is given, its path must be relative to root_dir or the
current directory. If None, no changes will be made to the default parameters.

• emul_type (Emulator subclass or None. Default: None) – The type of Emulator to
use in this Pipeline instance. If None, use the default emulator instead.

• comm (Intracomm object or None. Default: None) – The MPI intra-communicator to
use in this Pipeline instance or MPI.COMM_WORLD if comm is None.

_call_model(emul_i, par_set, data_idx)
Obtain the output corresponding to the provided data_idx that is generated by the model for a given model
parameter sample par_set. The current emulator iteration emul_i is also provided in case it is required by
the ModelLink subclass.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• par_set (1D array_like) – Model parameter sample to calculate the model output for.

• data_idx (list of tuples) – The list of data identifiers for which the model is requested to
return the corresponding data values.

Returns mod_out (1D ndarray object) – Model output corresponding to given par_set.

_compile_code_snippets()
Compiles all pre-defined built-in code snippets to code objects and saves them to code_objects. These
code objects are used for performing standard operations in the _evaluate_sam_set() method.

_do_impl_check(emul_i, uni_impl_val)
Performs an implausibility cut-off check on the provided implausibility values uni_impl_val at emulator
iteration emul_i.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• uni_impl_val (1D array_like) – Array containing all univariate implausibility values cor-
responding to a certain parameter set for all data points.

Returns

• result (bool) – 1 if check was successful, 0 if it was not.

• impl_cut_val (float) – Implausibility value at the first real implausibility cut-off.

_evaluate_model(emul_i, sam_set, data_idx)
Evaluates the model for provided evaluation sample set sam_set at given data points data_idx.

61

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

This method automatically distributes the samples according to the various flags set in the ModelLink
subclass.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• sam_set (1D or 2D array_like) – Parameter/sample set to evaluate in the model.

• data_idx (list of tuples) – The list of data identifiers for which the model is requested to
return the corresponding data values.

Returns

• sam_set (2D ndarray object of shape (n_sam, n_par)) – Array containing the sam-
ple set used to evaluate the model.

• mod_set (2D ndarray object of shape (n_sam, n_data)) – Array containing the
data values corresponding to the requested data points.

_evaluate_sam_set(emul_i, sam_set, exec_code)
Evaluates a provided set of emulator evaluation samples sam_set at a given emulator iteration emul_i. The
provided tuple of code snippets exec_code are executed using Python’s exec() function at specific points
during the analysis.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• sam_set (2D ndarray object) – Array containing model parameter value sets to be eval-
uated in all emulator systems in emulator iteration emul_i.

• exec_code ({‘analyze’, ‘evaluate’, ‘hybrid’, ‘project’} or tuple) – Tuple of five code snip-
pets (pre_code, eval_code, anal_code, post_code, exit_code) to
be executed at specific points during the analysis. If string, use one of the built-in tuples
in code_objects instead.

Other Parameters

• pre_code (str or code object) – Code snippet to be executed before the evaluation of
sam_set starts.

• eval_code (str or code object) – Code snippet to be executed after the evaluation of each
sample in sam_set.

• anal_code (str or code object) – Code snippet to be executed after the analysis of each
sample in sam_set. This code snippet is only executed by the controller.

• post_code (str or code object) – Code snippet to be executed after the evaluation of
sam_set ends.

• exit_code (str or code object) – Code snippet to be executed before returning the results
of the evaluation of sam_set. This code snippet is only executed by the controller.

Returns results (object) – The object that is assigned to a local variable called results, which is
defaulted to None if no code snippet sets it. Preferably, the execution of post_code and/or
exit_code sets this variable. All MPI ranks return it.

Notes

If any of the code snippets is provided as a string, it will be compiled into a code object before starting the
evaluation.

62 Chapter 9. Pipeline

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#exec
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

_get_default_parameters()
Generates a dict containing default values for all pipeline parameters.

Returns par_dict (dict) – Dict containing all default pipeline parameter values.

_get_eval_sam_set(emul_i)
Generates an emulator evaluation sample set to be used for analyzing an emulator iteration. Currently uses
the lhd() function.

Parameters emul_i (int) – Number indicating the requested emulator iteration.

Returns eval_sam_set (2D ndarray object) – Array containing the evaluation samples.

_get_ext_real_set(emul_i, ext_real_set)
Processes an externally provided model realization set ext_real_set, containing the used sample set and the
corresponding data value set, to be used for the provided emul_i.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• ext_real_set (str, list, dict or None) – String indicating the suffix of the backup file that
needs to be used; list of dicts containing an externally calculated set of model evaluation
samples and its data values; a dict with keys ['sam_set', 'mod_set'] containing
these dicts; or None if no external set needs to be used.

Returns

• ext_sam_set (1D or 2D ndarray object) – Array containing the externally provided
model evaluation samples.

• ext_mod_set (1D or 2D ndarray object) – Array containing the model outputs of all
specified externally provided model evaluation samples.

_get_f_impl(emul_i)
Returns the fraction of parameter space that passed the implausibility checks during the analysis of the
provided emulator iteration emul_i.

Parameters emul_i (int) – Number indicating the requested emulator iteration.

Returns f_impl (float) – The fraction of parameter space that is still plausible.

_get_impl_space(emul_i)
Returns the boundaries of the hypercube that encloses the parameter space in which the plausible space of
the provided emulator iteration emul_i is defined.

Parameters emul_i (int) – Number indicating the requested emulator iteration.

Returns impl_space (2D ndarray object) – The requested hypercube boundaries.

Note: The parameter space over which plausible space is defined is always equal to the emulator space of
the next iteration. This means that reanalyzing an iteration can change the result of this function.

_get_iteration_data(emul_i, sam_set, ext_sam_set, ext_mod_set)
Obtains the model realization data for given emulator iteration emul_i by evaluating the provided sam_set
in the model and distributing model outputs to the correct emulator systems.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• sam_set (2D ndarray object) – Array containing the model evaluation samples.

63

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

• ext_sam_set (1D or 2D ndarray object) – Array containing the externally provided
model evaluation samples.

• ext_mod_set (1D or 2D ndarray object) – Array containing the model outputs of all
specified externally provided model evaluation samples.

Generates

sam_set [2D ndarray object] Array containing the model evaluation samples for emulator iteration
emul_i.

mod_set [2D ndarray object] Array containing the model outputs of all specified model evaluation
samples for emulator iteration emul_i.

_get_md_var(emul_i, par_set)
Retrieves the model discrepancy variances, which includes all variances that are created by the model pro-
vided by the ModelLink instance. This method tries to call the get_md_var() method, and assumes
a default model discrepancy variance of 1/6th the data value if it cannot be called. If the data value space
is not linear, then this default value is calculated such to reflect that.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• par_set (1D ndarray object) – Model parameter value set to calculate the model dis-
crepancy variances for.

Returns var_md (2D ndarray object) – Variance of the model discrepancy.

_get_mock_data(mock_par)
Generates mock data and loads it into the ModelLink object that was provided during class initialization.
This function overwrites the ModelLink properties holding the parameter estimates, data values and data
errors.

Parameters mock_par (1D array_like or None) – If 1D array_like, use the provided parameter
estimates to create the mock data. If None, a random parameter set will be generated as
parameter estimates.

Generates

Overwrites the corresponding ModelLink class properties with the generated values.

_get_n_eval_sam(emul_i)
This function calculates the total number of emulator evaluation samples at a given emulator iteration
emul_i from base_eval_sam.

Parameters emul_i (int) – Number indicating the requested emulator iteration.

Returns n_eval_sam (int) – Total number of emulator evaluation samples.

_get_paths(root_dir, working_dir, prefix)
Obtains the path for the root directory, working directory and parameters file for PRISM.

Parameters

• root_dir (str or None) – String containing the absolute path of the root directory where all
working directories are stored. If None, root directory will be set to the directory this class
was initialized in.

64 Chapter 9. Pipeline

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

• working_dir (str, bool or None) – String containing the name of the working directory
of the emulator in root_dir. If True, a new working directory will be created in root_dir.
If None or False, working directory is set to the last one that was created in root_dir that
starts with the given prefix. Note that providing an integer instead of a bool will not work
here. If no directories are found, one will be created.

• prefix (str or None) – String containing a prefix that is used for naming new working
directories or scan for existing ones. If None, all directories in root_dir are considered
working directories and ‘prism_’ will be used as a prefix for new ones.

Generates

The absolute paths to the root directory, working directory, emulator master HDF5-file and PRISM param-
eters file.

_get_uni_impl(emul_i, par_set, adj_exp_val, adj_var_val)
Calculates the univariate implausibility values at a given emulator iteration emul_i for specified expectation
and variance values adj_exp_val and adj_var_val, corresponding to given par_set.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• par_set (1D ndarray object) – Model parameter value set to calculate the univariate
implausibility values for. Only used to pass to the get_md_var() method.

• adj_exp_val, adj_var_val (1D array_like) – The adjusted expectation and variance values
to calculate the univariate implausibility for.

Returns uni_impl_val (1D ndarray object) – Univariate implausibility value for all requested
emulator systems.

_load_data()
Loads in all the important pipeline data into memory for the controller rank. If it is detected that the last
emulator iteration has not been analyzed yet, the implausibility analysis parameters are taken from the
PRISM parameters dict and temporarily stored in memory.

Generates

All relevant pipeline data up to the last emulator iteration is loaded into memory.

_make_call(exec_fn, *args, **kwargs)
Sends the provided exec_fn to all worker ranks, if they are listening for calls, and tells them to execute it
using the provided args and kwargs. All ranks that call this function will execute exec_fn as well.

If used within the WorkerMode context manager, this function should only be called by the controller. If
not, it should be called by all valid ranks that must execute exec_fn.

Parameters

• exec_fn (str or callable) – If string, a callable attribute of this Pipeline instance or a
callable object that the workers should execute if not.

• args (positional arguments) – Positional arguments that need to be provided to exec_fn.

• kwargs (keyword arguments) – Keyword arguments that need to be provided to exec_fn.

Returns out (object) – The object returned by executing exec_fn. Note that only ranks that
directly call this function return, as workers in worker mode cannot do so.

65

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

Note: Changed in version 1.2.0: If any entry in args or kwargs is a string written as ‘pipe.XXX’, it is
assumed that ‘XXX’ refers to a Pipeline attribute of the MPI rank receiving the call. It will be replaced
with the corresponding attribute before exec_fn is called.

_make_call_workers(exec_fn, *args, **kwargs)
Sends the provided exec_fn to all worker ranks, if they are listening for calls, and tells them to execute it
using the provided args and kwargs.

If used within the WorkerMode context manager, this function should only be called by the controller. If
not, it should be called by all valid ranks that must execute exec_fn.

Parameters

• exec_fn (str or callable) – If string, a callable attribute of this Pipeline instance or a
callable object that the workers should execute if not.

• args (positional arguments) – Positional arguments that need to be provided to exec_fn.

• kwargs (keyword arguments) – Keyword arguments that need to be provided to exec_fn.

Returns out (object) – The object returned by executing exec_fn. Note that only ranks that
directly call this function return, as workers in worker mode cannot do so.

Note: Changed in version 1.2.0: If any entry in args or kwargs is a string written as ‘pipe.XXX’, it is
assumed that ‘XXX’ refers to a Pipeline attribute of the MPI rank receiving the call. It will be replaced
with the corresponding attribute before exec_fn is called.

_multi_call_model(emul_i, sam_set, data_idx)
Obtain the output set corresponding to the provided data_idx that is generated by the model for a given
model parameter sample set sam_set. The current emulator iteration emul_i is also provided in case it is
required by the ModelLink subclass.

This is a multi-version of _call_model().

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• sam_set (2D array_like) – Model parameter sample set to calculate the model output for.

• data_idx (list of tuples) – The list of data identifiers for which the model is requested to
return the corresponding data values.

Returns mod_set (2D ndarray object) – Model output set corresponding to given sam_set.

_read_parameters(prism_par)
Reads in all parameters in the provided prism_par and saves them as a dict in the current Pipeline
instance.

_save_data(data_dict)
Saves a given data dict {keyword: data} at the last emulator iteration to the HDF5-file and as an
data attribute to the current Pipeline instance.

Parameters data_dict (dict) – Dict containing the data that needs to be saved to the HDF5-file.

Keyword Arguments

• keyword ({‘impl_par’; ‘impl_sam’; ‘n_eval_sam’}) – String specifying the type of data
that needs to be saved.

66 Chapter 9. Pipeline

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

• data ({int; float; str; array_like} or dict) – The actual data that needs to be saved at data
keyword keyword. If dict, save every item individually.

Generates

The specified data is saved to the HDF5-file.

_save_statistics(emul_i, stat_dict)
Saves a given statistics dict {keyword: [value, unit]} at emulator iteration emul_i to the
HDF5-file. The provided values are always saved as strings.

Parameters emul_i (int) – Number indicating the requested emulator iteration.

Keyword Arguments

• keyword (str) – String containing the name/keyword of the statistic that is being saved.

• value (int, float or str) – The value of the statistic.

• unit (str) – The unit of the statistic.

_set_impl_par(impl_cut)
Sets the impl_cut and cut_idx properties for implausibility evaluations using prism_dict and the
provided impl_cut.

Parameters impl_cut (list of float or None) – Incomplete, shortened impl_cut-offs list to be
used during the analysis of this emulator iteration. If None, use prism_dict instead.

Generates

impl_cut [1D ndarray object] Full list containing the impl_cut-offs for all data points provided to the
emulator.

cut_idx [int] Index of the first impl_cut-off in the impl_cut list that is not 0.

_set_parameters()
Sets the Pipeline parameters from the prism_dict property and saves them in the current Pipeline
instance.

analyze(*, impl_cut=None)
Analyzes the emulator at the last emulator iteration for a large number of emulator evaluation samples. All
samples that survive the implausibility checks set by the provided impl_cut, are used in the construction of
the next emulator iteration.

Other Parameters impl_cut (list of float or None. Default: None) – Incomplete, shortened
implausibility cut-offs list to be used during the analysis of this emulator iteration. If None,
the currently set implausibility cut-off values (impl_cut) will be used.

Generates

impl_sam [2D ndarray object] Array containing all emulator evaluation samples that survived the im-
plausibility checks.

construct(emul_i=None, *, analyze=True, ext_real_set=None, force=False)
Constructs the emulator at the specified emulator iteration emul_i, and performs an implausibility analysis
on the emulator iteration right afterward if requested (analyze()).

Other Parameters

67

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

• emul_i (int or None. Default: None) – If int, number indicating the requested emulator
iteration. If None, the next iteration of the emulator will be constructed.

• analyze (bool. Default: True) – Bool indicating whether or not to perform an analysis
after the specified emulator iteration has been successfully constructed, which is required
for making projections (project()) and constructing the next iteration.

• ext_real_set (str, list, dict or None. Default: None) – String indicating the suffix of
the backup file that needs to be used; list of dicts containing an externally calculated
set of model evaluation samples and its data values; a dict with keys ['sam_set',
'mod_set'] containing these dicts; or None if no external set needs to be used.

• force (bool. Default: False) – Controls what to do if the specified emulator iteration
emul_i already (partly) exists. If False, finish construction of the specified iteration or skip
it if already finished. If True, reconstruct the specified iteration entirely.

Generates

A new HDF5-group with the emulator iteration as its name, in the loaded emulator master file, containing
emulator data required for this emulator iteration.

Notes

Using an emulator iteration that has been (partly) constructed before, will finish construction or skip it if
already finished when force is False; or it will delete that and all following iterations, and reconstruct the
specified iteration when force is True. Using emul_i = 1 and force is True is equivalent to reconstructing
the entire emulator.

If no implausibility analysis is requested, then the implausibility parameters are taken from the PRISM
parameters dict and temporarily stored in memory in order to enable the usage of the evaluate()
method.

crystal()
Creates an instance of QApplication or retrieves it if one already exists, and starts Crystal, PRISM’s
Projection GUI.

Crystal provides an interactive way of creating projection figures, as opposed to the static and linear
method provided by project(). It is made to make it easier to create; view; compare; and analyze
large numbers of projection figures. All options available in the project() method can also be accessed
through Crystal.

As with all Pipeline user methods, this function must be called by all MPI ranks.

New in version 1.2.0.

details(emul_i=None)
Prints the details/properties of the currently loaded Pipeline instance at given emulator iteration emul_i.
See Props for detailed descriptions of all printed properties.

Other Parameters emul_i (int or None. Default: None) – If int, number indicating the re-
quested emulator iteration. If None, the last iteration of the emulator will be used.

Props

Working directory The relative path to the working directory of the emulator starting at the current work-
ing directory.

68 Chapter 9. Pipeline

PRISM documentation

Emulator type The type of this emulator, corresponding to the emul_type of the provided emul_type
during Pipeline initialization. If no emulator type was provided during initialization, this is ‘de-
fault’.

ModelLink subclass Name of the ModelLink subclass used to construct this emulator.

Emulation method Indicates the combination of regression and Gaussian emulation methods that have
been used for this emulator.

Mock data used? Whether or not mock data has been used to construct this emulator. If so, the printed
estimates for all model parameters are the parameter values used to create the mock data.

Emulator iteration The iteration of the emulator this details overview is about. By default, this is the last
(partly) constructed iteration.

Construction completed? Whether or not the construction of this emulator iteration is completed. If not,
the missing components for each emulator system are listed and the remaining information of this
iteration is not printed.

Plausible regions? Whether or not plausible regions have been found during the analysis of this emulator
iteration. If no analysis has been done yet, “N/A” will be printed.

Projections available? Whether or not projections have been created for this emulator iteration. If projec-
tions are available and analysis has been done, but with different implausibility cut-offs, a “desynced”
note is added. Also prints number of available projections versus maximum number of projections in
parentheses.

of model evaluation samples The total number of model evaluation samples used to construct all emu-
lator iterations up to this iteration, with the number for every individual iteration in parentheses.

of plausible/analyzed samples The number of emulator evaluation samples that passed the implausi-
bility check out of the total number of analyzed samples in this emulator iteration. This is the number
of model evaluation samples that was/will be used for the construction of the next emulator iteration.
If no analysis has been done, the numbers show up as “-“.

% of parameter space remaining The percentage of the total number of analyzed samples that passed
the implausibility check in this emulator iteration. If no analysis has been done, the number shows up
as “-“.

of active/total parameters The number of model parameters that was considered active during the con-
struction of this emulator iteration, compared to the total number of model parameters defined in the
used ModelLink subclass.

of emulated data points The number of data points that have been emulated in this emulator iteration.

of emulator systems The total number of emulator systems that are required in this emulator. The
number of active emulator systems is equal to the number of data points.

Parameter space Lists the name, lower and upper value boundaries and estimate (if provided) of all
model parameters defined in the used ModelLink subclass. An asterisk is printed in front of the
parameter name if this model parameter was considered active during the construction of this emulator
iteration. A question mark is used instead if the construction of this emulator iteration is not finished.

evaluate(sam_set, emul_i=None)
Evaluates the given model parameter sample set sam_set up to given emulator iteration emul_i. The output
of this function depends on the number of dimensions in sam_set. The output is always provided on the
controller rank.

Parameters sam_set (1D or 2D array_like or dict) – Array containing model parameter value
sets to be evaluated in the emulator up to emulator iteration emul_i.

69

PRISM documentation

Other Parameters emul_i (int or None. Default: None) – If int, number indicating the re-
quested emulator iteration. If None, the last iteration of the emulator will be used.

Returns

• impl_check (list of bool) – List of bool indicating whether or not the given samples passed
the implausibility check at the given emulator iteration emul_i.

• emul_i_stop (list of int) – List containing the last emulator iterations at which the given
samples are still within the plausible region of the emulator.

• adj_exp_val (2D ndarray object) – Array containing the adjusted expectation values
for all given samples.

• adj_var_val (2D ndarray object) – Array containing the adjusted variance values for
all given samples.

• uni_impl_val (2D ndarray object) – Array containing the univariate implausibility val-
ues for all given samples.

Prints (if 1D sam_set)

emul_i_stop [int] Last emulator iteration at which the given sample is still within the plausible region of
the emulator.

adj_exp_val [1D ndarray object] The adjusted expectation values for the given sample.

adj_var_val [1D ndarray object] The adjusted variance values for the given sample.

sigma_val [1D ndarray object] The corresponding sigma value for the given sample.

uni_impl_val [1D ndarray object] The univariate implausibility values for the given sample.

Notes

If given emulator iteration emul_i has been analyzed before, the implausibility parameters of the last
analysis are used. If not, then the values are used that were read in when the emulator was loaded or that
have been set by the user.

project(emul_i=None, proj_par=None, **kwargs)
Analyzes the emulator iteration emul_i and constructs a series of projection figures detailing the behavior
of the model parameters corresponding to the given proj_par. The input and output depend on the number
of model parameters n_par.

All optional keyword arguments (except force) control various aspects of drawing the projection figures
and do not affect the projection data that is saved to HDF5. This is instead influenced by the proj_res
and proj_depth properties.

Parameters

• emul_i (int or None. Default: None) – If int, number indicating the requested emulator
iteration. If None, the last iteration of the emulator will be used.

• proj_par (1D array_like of {int; str} or None. Default: None) – For which model parame-
ters to construct the projection figures. If 1D array_like, construct projection figures for all
combinations of provided model parameters that are active, with a string referring to the
name of the model parameter and an integer referring to the position in which the model
parameter is shown in the details() method. If None, projection figures are made for
all active model parameters.

70 Chapter 9. Pipeline

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

Keyword Arguments

• proj_type ({‘2D’; ‘3D’; ‘2D+3D’}. Default: ‘2D’ (2D), ‘2D+3D’ (nD)) – String indicat-
ing which projection type to create for all supplied active parameters. If n_par == 2, this
is always ‘2D’ (and cannot be modified).

• figure (bool. Default: True) – Whether or not to create the projection figures. If True, the
figures are calculated, drawn and saved. If False, the figures are calculated and their data
is returned in a dict.

• align ({‘row’/’horizontal’; ‘col’/’column’/’vertical’}. Default: ‘col’) – If figure is True,
string indicating how to position the two subplots. If ‘row’/’horizontal’, the subplots are
positioned on a single row. If ‘col’/’column’/’vertical’, the subplots are positioned on a
single column.

• show_cuts (bool. Default: False) – If figure is True and proj_type is not ‘3D’, whether
to show all implausibility cut-offs in the 2D projections (True) or only the first cut-off
(False).

• smooth (bool. Default: False) – Controls what to do if a grid point contains no plausible
samples, but does contain a minimum implausibility value below the first non-wildcard
cut-off. If False, these values are kept, which can show up as artifact-like features in the
projection figure. If True, these values are set to the first cut-off, removing them from the
projection figure. Doing this may also remove interesting features. This does not affect
the projection data saved to HDF5. Smoothed figures have an ‘_s’ string appended to their
filenames.

• use_par_space (bool. Default: False) – Controls whether to use the model parameter
space (True) or the parameter space in which emulator iteration emul_i is defined (False)
as the axes limits in the projection figure.

• force (bool. Default: False) – Controls what to do if a projection hypercube has been
calculated at the emulator iteration emul_i before. If False, it will use the previously
acquired projection data to create the projection figure. If True, it will recalculate all the
data required to create the projection figure. Note that this will also delete all associated
projection figures.

• fig_kwargs (dict. Default: {‘figsize’: (6.4, 4.8), ‘dpi’: 100}) – Dict of keyword arguments
to be used when creating the subplots figure. It takes all arguments that can be provided to
the figure() function.

• impl_kwargs_2D (dict. Default: {}) – Dict of keyword arguments to be used for mak-
ing the minimum implausibility (top/left) plot in the 2D projection figures. It takes all
arguments that can be provided to the plot() function.

• impl_kwargs_3D (dict. Default: {‘cmap’: ‘cmr.rainforest_r’}) – Dict of keyword argu-
ments to be used for making the minimum implausibility (top/left) plot in the 3D projection
figures. It takes all arguments that can be provided to the hexbin() function.

• los_kwargs_2D (dict. Default: {}) – Dict of keyword arguments to be used for making
the line-of-sight (bottom/right) plot in the 2D projection figures. It takes all arguments that
can be provided to the plot() function.

• los_kwargs_3D (dict. Default: {‘cmap’: ‘cmr.freeze’}) – Dict of keyword arguments to
be used for making the line-of-sight (bottom/right) plot in the 3D projection figures. It
takes all arguments that can be provided to the hexbin() function.

• line_kwargs_est (dict. Default: {‘linestyle’: ‘–’, ‘color’: ‘grey’}) – Dict of keyword
arguments to be used for drawing the parameter estimate lines in both plots. It takes all
arguments that can be provided to the plot() function.

71

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.figure.html#matplotlib.pyplot.figure
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hexbin.html#matplotlib.pyplot.hexbin
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hexbin.html#matplotlib.pyplot.hexbin
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot

PRISM documentation

• line_kwargs_cut (dict. Default: {‘color’: ‘r’}) – Dict of keyword arguments to be used
for drawing the implausibility cut-off line(s) in the top/left plot in the 2D projection figures.
It takes all arguments that can be provided to the plot() function.

Returns fig_data (dict of dicts) – Dict containing the data for every requested projection figure,
split up into the ‘impl_min’ and ‘impl_los’ dicts. For 2D projections, every dict contains a
list with the x and y values. For 3D projections, it contains the x, y and z values. Note that
due to the figures being interpolations, the y/z values can be below zero or the line-of-sight
values being above unity.

Generates (if figure is True)

A series of projection figures detailing the behavior of the model. The lay-out and output of the projection
figures depend on the type of figure:

2D projection figure: The output will feature a figure with two subplots for every active model
parameter (n_par). Every figure gives details about the behavior of the corresponding model
parameter, by showing the minimum implausibility value (top/left) and the line-of-sight depth
(bottom/right) obtained at the specified parameter value, independent of the values of the other
parameters.

3D projection figure (only if n_par > 2): The output will feature a figure with two subplots for
every combination of two active model parameters that can be made (n_par*(n_par-1)/2).
Every figure gives details about the behavior of the corresponding model parameters, as well as
their dependency on each other. This is done by showing the minimum implausibility (top/left)
and the line-of-sight depth (bottom/right) obtained at the specified parameter values, independent
of the values of the remaining model parameters.

Notes

If given emulator iteration emul_i has been analyzed before, the implausibility parameters of the last
analysis are used. If not, then the values are used that were read in when the emulator was loaded or that
have been set by the user.

All colormaps defined in the e13tools package are loaded automatically when PRISM is imported and
can be used.

run(emul_i=None, *, force=False)
Calls the construct()method to start the construction of the given iteration of the emulator and creates
the projection figures right afterward if this construction was successful.

Other Parameters

• emul_i (int or None. Default: None) – If int, number indicating the requested emulator
iteration. If None, the next iteration of the emulator will be constructed.

• force (bool. Default: False) – Controls what to do if the specified emulator iteration
emul_i already (partly) exists. If False, finish construction of the specified iteration or skip
it if already finished. If True, reconstruct the specified iteration entirely.

start_gui()
Creates an instance of QApplication or retrieves it if one already exists, and starts Crystal, PRISM’s
Projection GUI.

Crystal provides an interactive way of creating projection figures, as opposed to the static and linear
method provided by project(). It is made to make it easier to create; view; compare; and analyze

72 Chapter 9. Pipeline

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot

PRISM documentation

large numbers of projection figures. All options available in the project() method can also be accessed
through Crystal.

As with all Pipeline user methods, this function must be called by all MPI ranks.

New in version 1.2.0.

File
Custom File class that has added logging and automatically uses hdf5_file as the HDF5-file to open.

Type File

base_eval_sam
Base number of emulator evaluations used to analyze the emulator systems. This number is scaled up by
the number of model parameters to generate the true number of emulator evaluations (n_eval_sam).

Type int

code_objects
Collection of pre-compiled built-in code snippets that are used in the _evaluate_sam_set() method.

Type dict of code objects

comm
The MPI intra-communicator that is used in this Pipeline instance. By default, this is MPI.
COMM_WORLD.

Type Intracomm

criterion
Value indicating which criterion to use in the lhd() function.

Type str, float or None

cut_idx
The index of the first non-wildcard in a list of implausibility values. This is equivalent to the number of
wildcards leading the cut-off values in impl_cut.

Type int

do_active_anal
Whether or not to do an active parameters analysis during the construction of the emulator systems.

Type bool

do_logging
Whether or not to save all logging messages. If False, all logging messages of level INFO and below are
ignored. It also enables/disables the progress bar when making projections.

Type bool

emulator
The Emulator instance created during Pipeline initialization.

Type Emulator

freeze_active_par
Whether or not previously active parameters always stay active if possible.

Type bool

hdf5_file
Absolute path to the loaded master HDF5-file.

Type str

73

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PRISM documentation

impl_cut
The non-wildcard univariate implausibility cut-off values for an emulator iteration. Setting it with the
reduced implausibility cut-off list will change the values of cut_idx and this property at the last emulator
iteration.

Type list of float

impl_sam
The model evaluation samples that will be added to the next emulator iteration.

Type ndarray

is_controller
Whether or not this MPI process is a controller rank. If no MPI is used, this is always True.

Type bool

is_worker
Whether or not this MPI process is a worker rank. If no MPI is used, this is always False.

Type bool

modellink
The ModelLink instance provided during Pipeline initialization.

Type ModelLink

n_eval_sam
The number of evaluation samples used to analyze an emulator iteration of the emulator systems. The
number of plausible evaluation samples is stored in n_impl_sam. It is zero if the specified iteration has
not been analyzed yet.

Type int

n_impl_sam
Number of model evaluation samples that passed the implausibility checks during the analysis of an emu-
lator iteration. It is zero if the specified iteration has not been analyzed yet or has no plausible samples.

Type int

n_sam_init
Number of evaluation samples that will be used to construct the first iteration of the emulator systems.

Type int

pot_active_par
The potentially active parameters. Only parameters from this list can become active during the active
parameters analysis. If do_active_anal is False, all parameters in this list will be active.

Type list of str

prism_dict
Dictionary containing all PRISM parameters that were provided during Pipeline initialization.

Type dict

proj_depth
Number of emulator evaluations that will be used to generate the samples in every grid point for the
projection figures. Note that when making 2D projections of nD models, the used depth will be this
number multiplied by proj_res.

Type int

proj_res
Number of emulator evaluations that will be used to generate the grid for the projection figures.

74 Chapter 9. Pipeline

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

PRISM documentation

Type int

rank
The rank of this MPI process in comm. If no MPI is used, this is always 0.

Type int

root_dir
Absolute path to the root directory.

Type str

size
The number of MPI processes in comm. If no MPI is used, this is always 1.

Type int

worker_mode
Special context manager within which all code is executed in worker mode. In worker mode, all
worker ranks are continuously listening for calls from the controller rank made with _make_call()
or _make_call_workers().

Note that all code within the context manager is executed by all ranks, with the worker ranks executing it
after the controller rank exits. It is therefore advised to use an if-statement inside to make sure only the
controller rank executes the code.

Using this context manager allows for easier use of PRISM in combination with serial/OpenMP codes
(like MCMC methods). It also makes it easier to write long complex code that is mostly executed on the
controller rank (but the worker ranks sometimes need to execute something).

All worker modes are independent of each other and can be created in a nested fashion.

Type WorkerMode

working_dir
Absolute path to the working directory.

Type str

class prism._pipeline.WorkerMode(pipeline_obj)

__enter__()
The provided Pipeline object enters worker mode, making all worker ranks start listening for calls from
the controller rank until this context manager exits.

__exit__(etype, value, tb)
The provided Pipeline objects exits worker mode, making all worker ranks stop listening for calls from
the controller rank and resume normal code execution.

__init__(pipeline_obj)
Initialize the WorkerMode class using the MPI ranks defined in the provided pipeline_obj. This class
should solely be initialized and finalized through the Pipeline class.

New in version 1.2.0.

Parameters pipeline_obj (Pipeline object) – The instance of the Pipeline class that is
enabling this worker mode.

static _process_call(pipeline_obj, exec_fn, args, kwargs)
Processes a call that was made with the make_call() or make_call_workers() method.

This function should solely be called through either of these methods and never directly.

Parameters

75

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PRISM documentation

• pipeline_obj (Pipeline object) – The instance of the Pipeline class that is making
this call.

• exec_fn (str or callable) – If string, a callable attribute of this Pipeline instance or a
callable object that should be executed if not.

• args (tuple) – Positional arguments that need to be provided to exec_fn.

• kwargs (dict) – Keyword arguments that need to be provided to exec_fn.

Returns out (object) – The object returned by executing exec_fn.

Note: If any entry in args or kwargs is a string written as ‘pipe.XXX’, it is assumed that ‘XXX’ refers
to a Pipeline attribute of the MPI rank receiving the call. It will be replaced with the corresponding
attribute before exec_fn is called.

static _process_call_str(pipeline_obj, string)
Processes a provided string that was provided as an argument value to _process_call().

Parameters

• pipeline_obj (Pipeline object) – The instance of the Pipeline class that is making
this call.

• string (str) – String value that must be processed.

Returns out (str or object) – If string starts with ‘pipe.’, the corresponding Pipeline attribute
will be returned. Else, string is returned.

listen_for_calls()
All worker ranks in the comm communicator start listening for calls from the corresponding controller rank
and will attempt to execute the received message. Listening for calls continues until this context manager
exits (__exit__() is called).

This method is automatically initialized and finalized when using the worker_mode context manager.

static make_call(pipeline_obj, exec_fn, *args, **kwargs)
Sends the provided exec_fn to all worker ranks, if they are listening for calls, and tells them to execute it
using the provided args and kwargs. All ranks that call this function will execute exec_fn as well.

If used within the WorkerMode context manager, this function should only be called by the controller. If
not, it should be called by all valid ranks that must execute exec_fn.

Parameters

• pipeline_obj (Pipeline object) – The instance of the Pipeline class that is making
this call.

• exec_fn (str or callable) – If string, a callable attribute of this Pipeline instance or a
callable object that the workers should execute if not.

• args (positional arguments) – Positional arguments that need to be provided to exec_fn.

• kwargs (keyword arguments) – Keyword arguments that need to be provided to exec_fn.

Returns out (object) – The object returned by executing exec_fn. Note that only ranks that
directly call this function return, as workers in worker mode cannot do so.

Note: Changed in version 1.2.0: If any entry in args or kwargs is a string written as ‘pipe.XXX’, it is
assumed that ‘XXX’ refers to a Pipeline attribute of the MPI rank receiving the call. It will be replaced

76 Chapter 9. Pipeline

PRISM documentation

with the corresponding attribute before exec_fn is called.

static make_call_workers(pipeline_obj, exec_fn, *args, **kwargs)
Sends the provided exec_fn to all worker ranks, if they are listening for calls, and tells them to execute it
using the provided args and kwargs.

If used within the WorkerMode context manager, this function should only be called by the controller. If
not, it should be called by all valid ranks that must execute exec_fn.

Parameters

• pipeline_obj (Pipeline object) – The instance of the Pipeline class that is making
this call.

• exec_fn (str or callable) – If string, a callable attribute of this Pipeline instance or a
callable object that the workers should execute if not.

• args (positional arguments) – Positional arguments that need to be provided to exec_fn.

• kwargs (keyword arguments) – Keyword arguments that need to be provided to exec_fn.

Returns out (object) – The object returned by executing exec_fn. Note that only ranks that
directly call this function return, as workers in worker mode cannot do so.

Note: Changed in version 1.2.0: If any entry in args or kwargs is a string written as ‘pipe.XXX’, it is
assumed that ‘XXX’ refers to a Pipeline attribute of the MPI rank receiving the call. It will be replaced
with the corresponding attribute before exec_fn is called.

__weakref__
list of weak references to the object (if defined)

77

PRISM documentation

78 Chapter 9. Pipeline

CHAPTER 10

Emulator

10.1 Classes

10.1.1 Emulator

class prism.emulator.Emulator(pipeline_obj, modellink_obj)
Defines the Emulator base class of the PRISM package.

Description

The Emulator class is the backbone of the PRISM package, holding all tools necessary to construct, load,
save and evaluate the emulator of a model. It performs many checks to see if the provided ModelLink object
is compatible with the current emulator, advises the user on alternatives when certain operations are requested,
automatically takes care of distributing emulator systems over MPI ranks and more.

Even though the purpose of the Emulator class is to hold only information about the emulator and therefore
does not require any details about the provided ModelLink object, it will keep track of changes made to it. This
is to allow the user to modify the properties of the ModelLink subclass without causing any desynchronization
problems by accident.

The Emulator class requires to be linked to an instance of the Pipeline class and will automatically attempt
to do so when initialized. By default, this class should only be initialized from within a Pipeline object.

__init__(pipeline_obj, modellink_obj)
Initialize an instance of the Emulator class.

Parameters

• pipeline_obj (Pipeline object) – The Pipeline instance this Emulator instance
should be linked to.

• modellink_obj (ModelLink object) – The ModelLink instance that should be linked
to pipeline_obj.

79

PRISM documentation

_assign_data_idx(emul_i)
Determines the emulator system each data point in the provided emulator iteration emul_i should be as-
signed to, in order to make sure that recurring data points have the same emulator system index as in the
previous emulator iteration. If multiple options are possible, data points are assigned such to spread them
as much as possible.

Parameters emul_i (int) – Number indicating the requested emulator iteration.

Returns

• data_to_emul_s (list of int) – The index of the emulator system that each data point should
be assigned to.

• n_emul_s (int) – The total number of active and passive emulator systems there will be in
the provided emulator iteration.

Examples

If the number of data points is less than the previous iteration:

>>> emul_i = 2
>>> self._data_idx[emul_i-1]
['A', 'B', 'C', 'D', 'E']
>>> self._modellink._data_idx
['B', 'F', 'G', 'E']
>>> self._assign_data_idx(emul_i)
([1, 3, 2, 4], 5)

If the number of data points is more than the previous iteration:

>>> emul_i = 2
>>> self._data_idx[emul_i-1]
['A', 'B', 'C', 'D', 'E']
>>> self._modellink._data_idx
['B', 'F', 'G', 'E', 'A', 'C']
>>> self._assign_data_idx(emul_i)
([1, 5, 3, 4, 0, 2], 6)

If there is no previous iteration:

>>> emul_i = 1
>>> self._data_idx[emul_i-1]
[]
>>> self._modellink._data_idx
['B', 'F', 'G', 'E', 'A', 'C']
>>> self._assign_data_idx(emul_i)
([5, 4, 3, 2, 1, 0], 6)

_assign_emul_s(emul_i)
Determines which emulator systems (files) should be assigned to which MPI rank in order to balance the
number of active emulator systems on every rank for every iteration up to the provided emulator iteration
emul_i. If multiple choices can achieve this, the emulator systems are automatically spread out such that
the total number of active emulator systems on a single rank is also balanced as much as possible.

Parameters emul_i (int) – Number indicating the requested emulator iteration.

Returns emul_s_to_core (list of lists) – A list containing the emulator systems that have been
assigned to the corresponding MPI rank by the controller.

80 Chapter 10. Emulator

PRISM documentation

Notes

Currently, this function only uses high-level MPI. Additional speed can be obtained by also implementing
low-level MPI, which will potentially be done in the future.

_check_future_compat(req_version, dep_version)
Checks if the version of this emulator is compatible with the provided req_version. If not, raises a
FutureWarning, indicating that the given dep_version will no longer support this emulator.

Parameters

• req_version (str) – The version in which an incompatible change was introduced.

• dep_version (str) – The version in which the backward compatibility for this change will
be removed.

_cleanup_emul_files(emul_i)
Opens all emulator HDF5-files and removes the provided emulator iteration emul_i and subsequent itera-
tions from them. Also removes any related projection figures that have default names. If emul_i == 1, all
emulator HDF5-files are removed instead.

Parameters emul_i (int) – Number indicating the requested emulator iteration.

_construct_iteration(emul_i)
Constructs the emulator iteration corresponding to the provided emul_i, by performing the given emulation
method and pre-calculating the prior expectation and variance values of the used model evaluation samples.

Parameters emul_i (int) – Number indicating the requested emulator iteration.

Generates

All data sets that are required to evaluate the emulator at the constructed iteration.

_create_new_emulator()
Creates a new master HDF5-file that holds all the information of a new emulator and writes all important
emulator details to it. Afterwards, resets all loaded emulator data and prepares the HDF5-file and emulator
for the construction of the first emulator iteration.

Generates

A new master HDF5-file ‘prism.hdf5’ contained in the working directory specified in the Pipeline
instance, holding all information required to construct the first iteration of the emulator.

_do_regression(emul_i, emul_s_seq)
Performs a forward stepwise linear regression for all requested emulator systems emul_s_seq in the pro-
vided emulator iteration emul_i. Calculates what the expectation values of all polynomial coefficients are.
The polynomial order that is used in the regression depends on poly_order.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• emul_s_seq (list of int) – List of numbers indicating the requested emulator systems.

10.1. Classes 81

https://docs.python.org/3/library/exceptions.html#FutureWarning

PRISM documentation

Generates (for every emulator system)

rsdl_var [float] Residual variance of the regression function.

regr_score [float] Fit-score of the regression function.

poly_coef [1D ndarray object] Array containing the expectation values of the non-zero polynomial
coefficients.

poly_powers [2D ndarray object] Array containing the powers of the non-zero polynomial terms in the
regression function.

poly_idx [1D ndarray object] Array containing the indices of the non-zero polynomial terms in the
regression function.

poly_coef_cov [1D ndarray object (if use_regr_cov is True)] Array containing the covariance val-
ues of the non-zero polynomial coefficients.

_evaluate(emul_i, par_set)
Evaluates the emulator systems emul_s_seq at iteration emul_i for given par_set.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• emul_s_seq (list of int) – List of numbers indicating the requested emulator systems.

• par_set (1D ndarray object) – Model parameter value set to evaluate the emulator at.

Returns

• adj_exp_val (1D ndarray object) – Adjusted emulator expectation value for all re-
quested emulator systems on this MPI rank.

• adj_var_val (1D ndarray object) – Adjusted emulator variance value for all requested
emulator systems on this MPI rank.

_get_active_par(emul_i, emul_s_seq)
Determines the active parameters to be used for every emulator system listed in emul_s_seq in the provided
emulator iteration emul_i. Uses backwards stepwise elimination to determine the set of active parameters.
The polynomial order that is used in the stepwise elimination depends on poly_order.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• emul_s_seq (list of int) – List of numbers indicating the requested emulator systems.

Generates (for every emulator system)

active_par_data [1D ndarray object] Array containing the indices of all the parameters that are active
in the emulator iteration emul_i.

_get_adj_exp(emul_i, emul_s_seq, par_set, cov_vec)
Calculates the adjusted emulator expectation values for requested emulator systems emul_s_seq at a given
emulator iteration emul_i for specified parameter set par_set and corresponding covariance vector cov_vec.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• emul_s_seq (list of int) – List of numbers indicating the requested emulator systems.

82 Chapter 10. Emulator

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

• par_set (1D ndarray object) – Model parameter value set to calculate the adjusted em-
ulator expectation for.

• cov_vec (2D ndarray object) – Covariance vector corresponding to par_set.

Returns adj_exp_val (1D ndarray object) – Adjusted emulator expectation value for all re-
quested emulator systems on this MPI rank.

_get_adj_var(emul_i, emul_s_seq, par_set, cov_vec)
Calculates the adjusted emulator variance values for requested emulator systems emul_s_seq at a given
emulator iteration emul_i for specified parameter set par_set and corresponding covariance vector cov_vec.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• emul_s_seq (list of int) – List of numbers indicating the requested emulator systems.

• par_set (1D ndarray object) – Model parameter value set to calculate the adjusted em-
ulator variance for.

• cov_vec (2D ndarray object) – Covariance vector corresponding to par_set.

Returns adj_var_val (1D ndarray object) – Adjusted emulator variance value for all re-
quested emulator systems on this MPI rank.

_get_cov(emul_i, emul_s_seq, par_set1, par_set2)
Calculates the full emulator covariances for requested emulator systems emul_s_seq at emulator iteration
emul_i for given parameter sets par_set1 and par_set2. The contributions to these covariances depend on
method.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• emul_s_seq (list of int) – List of numbers indicating the requested emulator systems.

• par_set1, par_set2 (1D ndarray object or None) – If par_set1 and par_set2 are both
not None, calculate covariances for par_set1 with par_set2. If par_set1 is not None and
par_set2 is None, calculate covariances for par_set1 with sam_set (covariance vector).
If par_set1 and par_set2 are both None, calculate covariances for sam_set (covariance
matrix). When not None, par_set is the model parameter value set to calculate the covari-
ances for.

Returns cov (1D, 2D or 3D ndarray object) – Depending on the arguments provided, a co-
variance value, vector or matrix for requested emulator systems.

_get_cov_matrix(emul_i, emul_s_seq)
Calculates the (inverse) matrix of covariances between known model evaluation samples for requested
emulator systems emul_s_seq at emulator iteration emul_i.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• emul_s_seq (list of int) – List of numbers indicating the requested emulator systems.

Generates

cov_mat [3D ndarray object] Matrix containing the covariances between all known model evaluation
samples for requested emulator systems.

cov_mat_inv [3D ndarray object] Inverse of covariance matrix for requested emulator systems.

10.1. Classes 83

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

_get_default_parameters()
Generates a dict containing default values for all emulator parameters.

Returns par_dict (dict) – Dict containing all default emulator parameter values.

_get_emul_i(emul_i, cur_iter=True)
Checks if the provided emulator iteration emul_i can be requested or replaces it if None was provided.
This method requires all MPI ranks to call it simultaneously.

Parameters emul_i (int or None) – Number indicating the requested emulator iteration.

Other Parameters cur_iter (bool) – Bool determining whether the current (True) or the next
(False) emulator iteration is requested.

Returns emul_i (int) – The requested emulator iteration that passed the check.

_get_emul_space(emul_i)
Returns the boundaries of the hypercube that encloses the parameter space in which the provided emulator
iteration emul_i is defined.

Parameters emul_i (int) – Number indicating the requested emulator iteration.

Returns emul_space (2D ndarray object) – The requested hypercube boundaries. If emul_i
== 1, this is equal to the defined model parameter space.

Note: The parameter space over which an emulator iteration is defined is always equal to the plausible
space of the previous iteration.

_get_exp_dot_term(emul_i, emul_s_seq)
Pre-calculates the second expectation adjustment dot-term for requested emulator systems emul_s_seq at
a given emulator iteration emul_i for all model evaluation samples and saves it for later use.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• emul_s_seq (list of int) – List of numbers indicating the requested emulator systems.

Generates

exp_dot_term [2D ndarray object] 2D array containing the pre-calculated values for the second ad-
justment dot-term of the adjusted expectation for requested emulator systems.

_get_inv_matrix(matrix)
Calculates the inverse of a given matrix. Right now only uses the pinv() function.

Parameters matrix (2D array_like) – Matrix to be inverted.

Returns matrix_inv (2D ndarray object) – Inverse of the given matrix.

_get_poly_term_str(active_par, poly_power)
Returns the string representation of a polynomial term given by the provided active_par and poly_power.

Parameters

• active_par (list of int) – List containing the indices of the parameters whose polynomial
powers are given in poly_power.

• poly_power (list of int) – List with the powers of the requested polynomial term.

Returns poly_term (str) – String representation of the requested polynomial term.

84 Chapter 10. Emulator

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.pinv.html#numpy.linalg.pinv
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

_get_prior_exp(emul_i, emul_s_seq, par_set)
Calculates the prior expectation value for requested emulator systems emul_s_seq at a given emulator
iteration emul_i for specified parameter set par_set. This expectation depends on method.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• emul_s_seq (list of int) – List of numbers indicating the requested emulator systems.

• par_set (1D ndarray object or None) – If None, calculate the prior expectation values of
sam_set. If not None, calculate the prior expectation value for the given model parameter
value set.

Returns prior_exp (1D or 2D ndarray object) – Prior expectation values for either sam_set
or par_set for requested emulator systems.

_get_regr_cov(emul_i, emul_s_seq, par_set1, par_set2)
Calculates the covariances of the regression function for requested emulator systems emul_s_seq at emu-
lator iteration emul_i for given parameter sets par_set1 and par_set2.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• emul_s_seq (list of int) – List of numbers indicating the requested emulator systems.

• par_set1, par_set2 (1D ndarray object or None) – If par_set1 and par_set2 are both
not None, calculate regression covariances for par_set1 with par_set2. If par_set1 is not
None and par_set2 is None, calculate regression covariances for par_set1 with sam_set
(covariance vector). If par_set1 and par_set2 are both None, calculate regression covari-
ances for sam_set (covariance matrix). When not None, par_set is the model parameter
value set to calculate the regression covariances for.

Returns regr_cov (1D, 2D or 3D ndarray object) – Depending on the arguments provided, a
regression covariance value, vector or matrix for requested emulator systems.

_get_rsdl_var(emul_i, emul_s_seq)
Splits up the calculated residual variances for requested emulator systems emul_s_seq at emulator iteration
emul_i into active and passive contributions.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• emul_s_seq (list of int) – List of numbers indicating the requested emulator systems.

Generates

act_rsdl_var [list of float] List containing the active portions of the residual variances.

pas_rsdl_var [list of float] List containing the passive portions of the residual variances. If f_infl is
not zero, this also includes the inflated residual variance values.

_load_data(emul_i)
Loads in all the important emulator data up to emulator iteration emul_i into memory.

Parameters emul_i (int) – Number indicating the requested emulator iteration.

10.1. Classes 85

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

Generates

All relevant emulator data up to emulator iteration emul_i is loaded into memory.

_load_emulator(modellink_obj)
Checks if the provided working directory contains a constructed emulator and loads in the emulator data
accordingly.

Parameters modellink_obj (ModelLink object) – Instance of the ModelLink class that
links the emulated model to this Pipeline object.

_prepare_new_iteration(emul_i)
Prepares the emulator for the construction of a new iteration emul_i. Checks if this iteration can be prepared
or if it has been prepared before, and acts accordingly.

Parameters emul_i (int) – Number indicating the requested emulator iteration.

Returns reload (bool) – Bool indicating whether or not the controller rank of the Pipeline
instance needs to reload its data.

Generates

A new group in the master HDF5-file with the emulator iteration as its name, containing subgroups corre-
sponding to all emulator systems that will be used in this iteration.

Notes

Preparing an iteration that has been prepared before, causes that and all subsequent iterations of the emu-
lator to be deleted. A check is carried out to see if it was necessary to reprepare the requested iteration and
a warning is given if this check fails.

_read_data_idx(emul_s_group)
Reads in and combines the parts of the data point identifier that is assigned to the provided emul_s_group.

Parameters emul_s_group (Group object) – The HDF5-group from which the data point iden-
tifier needs to be read in.

Returns data_idx (tuple of {int, float, str}) – The combined data point identifier.

_retrieve_parameters()
Reads in the emulator parameters from the provided working directory and saves them in the current
Emulator instance.

_save_data(emul_i, lemul_s, data_dict)
Saves a given data dict {keyword: data} at the given emulator iteration emul_i and local emulator
system lemul_s to the HDF5-file and as an data attribute to the current Emulator instance.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• lemul_s (int or None) – Number indicating the requested local emulator system. If None,
use the master emulator file instead.

• data_dict (dict) – Dict containing the data that needs to be saved to the HDF5-file.

Keyword Arguments

• keyword ({‘active_par’; ‘active_par_data’; ‘cov_mat’; ‘exp_dot_term’; ‘mod_real_set’;
‘regression’, ‘rsdl_var’}) – String specifying the type of data that needs to be saved.

86 Chapter 10. Emulator

PRISM documentation

• data ({int; float; str; array_like} or dict) – The actual data that needs to be saved at data
keyword keyword. If dict, save every item individually.

Generates

The specified data is saved to the HDF5-file.

_set_mock_data()
Loads previously used mock data into the ModelLink object, overwriting the parameter estimates, data
values, data errors, data spaces and data identifiers with their mock equivalents.

Generates

Overwrites the corresponding ModelLink class properties with the previously used values (taken from
the first emulator iteration).

_set_modellink(modellink_obj, modellink_loaded)
Sets the ModelLink object that will be used for constructing this emulator. If a constructed emulator is
present, checks if provided modellink_obj argument matches the ModelLink subclass used to construct
it.

Parameters

• modellink_obj (ModelLink object) – Instance of the ModelLink class that links the
emulated model to this Pipeline object. The provided ModelLink object must match
the one used to construct the loaded emulator.

• modellink_loaded (str or None) – If str, the name of the ModelLink subclass that was
used to construct the loaded emulator. If None, no emulator is loaded.

_set_parameters()
Sets the Emulator parameters from the prism_dict property and saves them in the current Emulator
instance.

_set_sam_set_data(emul_i, sam_set)
Sets the provided sam_set as the iteration data at the given emulator iteration emul_i.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• sam_set (2D ndarray object) – Array containing the model evaluation samples for em-
ulator iteration emul_i.

_write_data_idx(emul_s_group, data_idx)
Splits a given data_idx up into individual parts and saves it as an attribute to the provided emul_s_group.

Parameters

• emul_s_group (Group object) – The HDF5-group to which the data point identifier needs
to be saved.

• data_idx (tuple of {int, float, str}) – The data point identifier to be saved.

__weakref__
list of weak references to the object (if defined)

act_rsdl_var
The active contribution of the residual variance of every emulator system on this MPI rank. Obtained from
either rsdl_var (regression) or sigma (Gaussian).

10.1. Classes 87

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

Type dict of float

active_emul_s
The indices of the emulator systems on this MPI rank that are active.

Type list of int

active_par
The model parameter names that are considered active. Only available on the controller rank.

Type list of str

active_par_data
The model parameter names that are considered active for every emulator system on this MPI rank.

Type dict of lists

ccheck
The emulator system components that are still required to complete the construction of an emulator iter-
ation on this MPI rank. The controller rank additionally lists the required components that are emulator
iteration specific (‘mod_real_set’ and ‘active_par’).

Type list of str

cov_mat_inv
The inverses of the covariance matrices for every emulator system on this MPI rank.

Type list of ndarray

data_idx_to_core
List of the data identifiers that were assigned to the emulator systems listed in emul_s_to_core. Only
available on the controller rank.

Type list of lists

emul_i
The last emulator iteration that is fully constructed for all emulator systems on this MPI rank.

Type int

emul_load
Whether or not a previously constructed emulator is currently loaded.

Type bool

emul_s
The indices of the emulator systems that are assigned to this MPI rank.

Type list of int

emul_s_to_core
List of the indices of the emulator systems that are assigned to every MPI rank. Only available on the
controller rank.

Type list of lists

emul_space
The boundaries of the hypercube that encloses the parameter space in which the specified emulator iteration
is defined. This is always equal to the plausible space of the previous iteration.

Type ndarray

emul_type
The type of emulator that is currently loaded. This determines the way in which the Pipeline instance
will treat this Emulator instance.

88 Chapter 10. Emulator

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

Type str

exp_dot_term
The second expectation adjustment dot-term values of all model evaluation samples for every emulator
system on this MPI rank.

Type list of ndarray

f_infl
The residual variance inflation factor. The prior variance of all known samples is inflated by this factor
multiplied with rsdl_var (regression) or sigma (Gaussian). If this value is zero, no variance inflation
is performed.

Type float

l_corr
The Gaussian correlation lengths for all model parameters, which is defined as the maximum distance
between two values of a specific model parameter within which the Gaussian contribution to the correlation
between the values is still significant.

Type ndarray

method
The emulation method to use for constructing the emulator. Possible are ‘gaussian’, ‘regression’ and ‘full’.

Type str

mod_set
The model outputs corresponding to the samples in sam_set for every emulator system on this MPI rank.

Type list of ndarray

n_cross_val
Number of (k-fold) cross-validations that are used for determining the quality of the regression process. It
is set to zero if cross-validations are not used. If method == ‘gaussian’ and do_active_anal is False,
this number is not required.

Type int

n_emul_s
Number of emulator systems assigned to this MPI rank.

Type int

n_emul_s_tot
Total number of emulator systems assigned to all MPI ranks combined. Only available on the controller
rank.

Type int

n_sam
Number of model evaluation samples that have been/will be used to construct an emulator iteration.

Type int

pas_rsdl_var
The passive contribution of the residual variance of every emulator system on this MPI rank. If f_infl
is not zero, this also includes the inflated residual variance value. Obtained from either rsdl_var (re-
gression) or sigma (Gaussian).

Type dict of float

10.1. Classes 89

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PRISM documentation

poly_coef
The non-zero coefficients of the polynomial terms in the regression function for every emulator system on
this MPI rank. Empty if method == ‘gaussian’.

Type list of ndarray

poly_coef_cov
The covariances of all coefficients in poly_coef for every emulator system on this MPI rank. Empty if
method == ‘gaussian’ or use_regr_cov is False.

Type list of ndarray

poly_idx
The indices of all polynomial terms with non-zero coefficients in the regression function for every emulator
system on this MPI rank. Empty if method == ‘gaussian’.

Type list of ndarray

poly_order
Polynomial order that is considered for the regression process. If method == ‘gaussian’ and
do_active_anal is False, this number is not required.

Type int

poly_powers
The powers of all polynomial terms with non-zero coefficients in the regression function for every emulator
system on this MPI rank. Empty if method == ‘gaussian’.

Type list of ndarray

poly_terms
Overview of all polynomial terms with non-zero coefficients in the regression function for every emulator
system on this MPI rank. Empty if method == ‘gaussian’.

This is basically a human-readable representation of poly_coef plus poly_powers. Given its for-
matting, it is not advised to use this for any operations.

Type dict of dicts

prism_version
The version of PRISM that was used to construct the emulator that is currently loaded.

Type str

rsdl_var
The residual variance of every emulator system on this MPI rank. Obtained from regression process and
replaces the Gaussian sigma. Empty if method == ‘gaussian’.

Type dict of float

sam_set
The model evaluation samples that have been/will be used to construct the specified emulator iteration.

Type ndarray

sigma
Value of the Gaussian sigma. If method != ‘gaussian’, this value is not required, since it is obtained from
the regression process instead.

Type float

use_mock
Whether or not mock data has been used for the construction of this emulator instead of actual data. If
True, changes made to the data in the provided ModelLink object are ignored.

90 Chapter 10. Emulator

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float

PRISM documentation

Type bool

use_regr_cov
Whether or not to take into account the regression covariance when calculating the covariance of the
emulator, in addition to the Gaussian covariance. If method == ‘gaussian’, this bool is not required. If
method == ‘regression’, this bool is always set to True.

Type bool

10.1. Classes 91

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PRISM documentation

92 Chapter 10. Emulator

CHAPTER 11

ModelLink

11.1 Classes

11.1.1 GaussianLink

class prism.modellink.GaussianLink(n_gaussians=1, *args, **kwargs)
ModelLink class wrapper for a simple Gaussian model, used for testing the functionality of the PRISM
pipeline.

Formatting data_idx

x [int] The value that needs to be used for 𝑥 in the function
∑︀

𝑖 𝐴𝑖 exp
(︁
− (𝑥−𝐵𝑖)

2

2𝐶2
𝑖

)︁
to obtain the data value.

__init__(n_gaussians=1, *args, **kwargs)
Initialize an instance of the GaussianLink class.

Other Parameters n_gaussians (int. Default: 1) – The number of Gaussians to use for the
Gaussian model in this instance. The resulting number of model parameters n_par will be
3 * 𝑛𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑠.

n_gaussians
Number of Gaussians used in this GaussianLink instance.

Type int

11.1.2 ModelLink

class prism.modellink.ModelLink(*, model_parameters=None, model_data=None)
Provides an abstract base class definition that allows the Pipeline class to be linked to any model/test object
of choice. Every model wrapper used in the Pipeline class must be an instance of the ModelLink class.

93

https://docs.python.org/3/library/functions.html#int

PRISM documentation

Description

The ModelLink class is an abstract base class, which forms the base for wrapping a model and allowing
PRISM to use it effectively. Because it is mandatory for every model to be wrapped in a user-made ModelLink
subclass, several tools are provided to the user to make this as versatile as possible.

The ModelLink class uses three properties that define the way the subclass will be used by PRISM: name,
call_type and MPI_call. The first defines what the name of the subclass is, which is used by PRISM to
identify the subclass with and check if one did not use a different subclass by accident. The other two are flags
that determine how the call_model() method should be used. These three properties can be set anywhere
during the initialization of the ModelLink subclass, or are set to a default value if they are not modified.

Every ModelLink subclass needs to be provided with two different data sets: model parameters and model
data. The model parameters define which parameters the model can take, what their names are and in what
value range each parameter must be. The model data on the other hand, states where in a model realization a
data value must be retrieved and compared with a provided observational value. One can think of the model
data as the observational constraints used to calculate the likelihood in a Bayesian analysis.

The model parameters and model data can be set in two different ways. They can be hard-
coded into the ModelLink subclass by altering the get_default_model_parameters() and
get_default_model_data() methods or set by providing them during class initialization. A combi-
nation of both is also possible. More details on this can be found in __init__().

The ModelLink class has two abstract methods that must be overridden before the subclass can be initialized.
The call_model() method is the most important method, as it provides PRISM with a way of calling the
model wrapped in the ModelLink subclass. The get_md_var() method allows for PRISM to calculate the
model discrepancy variance.

Notes

The __init__() method may be extended by the ModelLink subclass, but the superclass version must
always be called.

If required, one can use the test_subclass() function to test a ModelLink subclass on correct function-
ality.

_ModelLink__set_model_data(add_model_data)
Generates the model data properties from the default model data and the additional input argument
add_model_data.

Parameters add_model_data (array_like, dict, str or None) – Anything that can be converted
to a dict that provides non-default model data information or None if only default data is used
from get_default_model_data().

Generates

n_data [int] Number of provided data points.

data_val [list] List with values of provided data points.

data_err [list of lists] List with upper and lower 1𝜎-confidence levels of provided data points.

data_spc [list] List with types of value space ({‘lin’, ‘log’, ‘ln’}) of provided data points.

data_idx [list of tuples] List with user-defined data point identifiers.

94 Chapter 11. ModelLink

PRISM documentation

_ModelLink__set_model_parameters(add_model_parameters)
Generates the model parameter properties from the default model parameters and the additional input
argument add_model_parameters.

Parameters add_model_parameters (array_like, dict, str or None) – Anything that can be
converted to a dict that provides non-default model parameters information or None if only
default information is used from get_default_model_parameters().

Generates

n_par [int] Number of model parameters.

par_name [list] List with model parameter names.

par_rng [ndarray object] Array containing the lower and upper values of the model parameters.

par_est [list] List containing user-defined estimated values of the model parameters. Contains None in
places where estimates were not provided.

__init__(*, model_parameters=None, model_data=None)
Initialize an instance of the ModelLink subclass.

Other Parameters model_parameters, model_data (array_like, dict, str or None. De-
fault: None) – Anything that can be converted to a dict that provides non-default
model parameters/data information or None if only default information is used from
get_default_model_parameters() or get_default_model_data(). For
more information on the lay-out of these dicts, see Notes.

If array_like, dict(model_parameters/model_data) must generate a dict with the correct lay-
out. If dict, the dict itself must have the correct lay-out. If str, the string must be the path to
a file containing the dict keys in the first column and the dict values in the second column,
which combined generate a dict with the correct lay-out.

Notes (model_parameters)

The model parameters provides this ModelLink subclass with the names, ranges and estimates of all
model parameters that need to be explored.

The model parameters dict requires to have the name of the parameters as the keyword, and a 1D list
containing the lower bound, the upper bound and, if applicable, the estimate of this parameter. It is not
required to provide an estimate for every parameter. The estimates are used to draw illustrative lines when
making projection figures. An example of a model parameters file can be found in the ‘data’ folder of
the PRISM package. If required, one can use the convert_parameters() function to validate their
formatting.

Formatting : {par_name: [lower_bnd, upper_bnd, par_est]}

Notes (model_data)

The model data provides this ModelLink subclass with the observational data points that need to be used
to constrain this model with.

The model data dict requires to have the data identifiers (data_idx) as the keyword, and a 1D list
containing the data value (data_val); the data errors (data_err) and the data space (data_spc).

11.1. Classes 95

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

If the data errors are given with one value, then the data points are assumed to have a centered 1𝜎-
confidence interval. If the data errors are given with two values, then the data points are assumed to
have a 1𝜎-confidence interval defined by the provided upper and lower errors.

The data spaces are one of five strings ({‘lin’, ‘log’ or ‘log_10’, ‘ln’ or ‘log_e’}) indicating in which of
the three value spaces (linear, log, ln) the data values are. It defaults to ‘lin’ if it is not provided.

The data identifier is a sequence of bools, ints, floats and strings that is unique for every data point. PRISM
uses it to identify a data point with, which is required in some cases (like MPI), while the model itself can
use it as a description of the operations required to extract the data point from the model output. It can be
provided as any sequence of any length for any data point. If any sequence contains a single element, it is
replaced by just that element instead of a tuple.

A simple example of a data identifier is 𝑓(

Formatting :_check_md_var(md_var, name)
Checks validity of provided set of model discrepancy variances md_var in this ModelLink instance.

Parameters

• md_var (1D or 2D array_like or dict) – Model discrepancy variance set to validate in this
ModelLink instance.

• name (str) – The name of the model discrepancy set, which is used in the error message
if the validation fails.

Returns md_var (2D ndarray object) – The (converted) provided md_var if the validation
was successful. If md_var was a dict, it will be converted to a ndarray object.

_check_mod_set(mod_set, name)
Checks validity of provided set of model outputs mod_set in this ModelLink instance.

Parameters

• mod_set (1D or 2D array_like or dict) – Model output (set) to validate in this
ModelLink instance.

• name (str) – The name of the model output (set), which is used in the error message if the
validation fails.

Returns mod_set (1D or 2D ndarray object) – The provided mod_set if the validation was
successful. If mod_set was a dict, it will be converted to a ndarray object (sorted on
data_idx).

_check_sam_set(sam_set, name)
Checks validity of provided set of model parameter samples sam_set in this ModelLink instance.

Parameters

• sam_set (1D or 2D array_like or dict) – Parameter/sample set to validate in this
ModelLink instance.

• name (str) – The name of the parameter/sample set, which is used in the error message if
the validation fails.

Returns sam_set (1D or 2D ndarray object) – The provided sam_set if the validation was
successful. If sam_set was a dict, it will be converted to a ndarray object.

_get_backup_path(emul_i, suffix)
Returns the absolute path to a backup file made by this ModelLink instance, using the provided emul_i
and suffix.

This method is used by the _make_backup() and _read_backup() methods, and should not be
called directly.

96 Chapter 11. ModelLink

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

Parameters

• emul_i (int) – The emulator iteration for which a backup filepath is needed.

• suffix (str or None) – If str, determine path to associated backup file using provided suffix.
If suffix is empty, obtain last created backup file. If None, create a new path to a backup
file.

Returns filepath (str) – Absolute path to requested backup file.

_get_model_par_seq(par_seq, name)
Converts a provided sequence par_seq of model parameter names and indices to a list of indices, removes
duplicates and checks if every provided name/index is valid.

Parameters

• par_seq (1D array_like of {int, str}) – A sequence of integers and strings determining
which model parameters need to be used for a certain operation.

• name (str) – A string stating the name of the variable the result of this method will be
stored in. Used for error messages.

Returns par_seq_conv (list of int) – The provided sequence par_seq converted to a sorted list
of model parameter indices.

_get_sam_space(sam_set)
Returns the boundaries of the hypercube that encloses the parameter space in which the provided sam_set
is defined.

The main use for this function is to determine what part of model parameter space was likely sampled
from in order to obtain the provided sam_set. Because of this, extra spacing is added to the boundaries to
reduce the effect of the used sampling method.

Parameters sam_set (1D or 2D array_like or dict) – Parameter/sample set for which an enclos-
ing hypercube is requested.

Returns sam_space (2D ndarray object) – The requested hypercube boundaries.

_make_backup(*args, **kwargs)
WARNING: This is an advanced utility method and probably will not work unless used properly. Use with
caution!

Creates an HDF5-file backup of the provided args and kwargs when called by the call_model()
method or any of its inner functions. Additionally, the backup will contain the emul_i, par_set and data_idx
values that were passed to the call_model() method. It also contains the version of PRISM that made
the backup. The backup can be restored using the _read_backup() method.

If it is detected that this method is used incorrectly, a RequestWarning is raised (and the method
returns) rather than a RequestError, in order to not disrupt the call to call_model().

Parameters

• args (positional arguments) – All positional arguments that must be stored in the backup
file.

• kwargs (keyword arguments) – All keyword arguments that must be stored in the backup
file.

Notes

The name of the created backup file contains the value of emul_i, name and a random string to avoid
replacing an already existing backup file.

11.1. Classes 97

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

The saved emul_i, par_set and data_idx are the values these variables have locally in the call_model()
method at the point this method is called. Because of this, making any changes to them may cause problems
and is therefore heavily discouraged. If changes are necessary, it is advised to copy them to a different
variable first.

_read_backup(emul_i, *, suffix=None)
Reads in a backup HDF5-file created by the _make_backup() method, using the provided emul_i and
the value of name.

Parameters emul_i (int) – The emulator iteration that was provided to the call_model()
method when the backup was made.

Other Parameters suffix (str or None. Default: None) – The suffix of the backup file (every-
thing between parentheses) that needs to be read. If None or empty, the last created backup
will be read.

Returns

• filename (str) – The absolute path to the backup file that has been read.

• data (dict with keys (‘emul_i’, ‘prism_version’, ‘par_set’, ‘data_idx’, ‘args’, ‘kwargs’))
– A dict containing the data that was provided to the _make_backup() method.

_to_par_space(sam_set)
Converts provided sam_set from unit space ([0, 1]) to parameter space ([lower_bnd, upper_bnd]).

_to_unit_space(sam_set)
Converts provided sam_set from parameter space ([lower_bnd, upper_bnd]) to unit space ([0, 1]).

call_model(emul_i, par_set, data_idx)
Calls the model wrapped in this ModelLink subclass at emulator iteration emul_i for model parameter
values par_set and returns the data points corresponding to data_idx.

This method is called with solely keyword arguments.

This is an abstract method and must be overridden by the ModelLink subclass.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• par_set (dict of float64) – Dict containing the values for all model parameters corre-
sponding to the requested model realization(s). If model is single-called, dict item is for-
matted as {par_name: par_val}. If multi-called, it is formatted as {par_name:
[par_val_1, par_val_2, ..., par_val_n]}.

• data_idx (list of tuples) – List containing the user-defined data point identifiers corre-
sponding to the requested data points.

Returns data_val (1D or 2D array_like or dict) – Array containing the data values correspond-
ing to the requested data points generated by the requested model realization(s). If model
is multi-called, data_val is of shape (n_sam, n_data). If dict, it has the identifiers in
data_idx as its keys with either scalars or 1D array_likes as its values.

Note: If this model is multi-called, then the parameter sets in the provided par_set dict will be sorted in
order of parameter name (e.g., sort on first parameter first, then on second parameter, etc.).

get_default_model_data()
Returns the default model data to use for every instance of this ModelLink subclass. By default, returns
_default_model_data.

98 Chapter 11. ModelLink

PRISM documentation

get_default_model_parameters()
Returns the default model parameters to use for every instance of this ModelLink subclass. By default,
returns _default_model_parameters.

get_md_var(emul_i, par_set, data_idx)
Calculates the linear model discrepancy variance at a given emulator iteration emul_i for model parameter
values par_set and given data points data_idx for the model wrapped in this ModelLink subclass.

This method is always single-called by one MPI rank with solely keyword arguments.

This is an abstract method and must be overridden by the ModelLink subclass.

Parameters

• emul_i (int) – Number indicating the requested emulator iteration.

• par_set (dict of float64) – Dict containing the values for all model parameters corre-
sponding to the requested model realization.

• data_idx (list of tuples) – List containing the user-defined data point identifiers corre-
sponding to the requested data points.

Returns md_var (1D or 2D array_like) – Array containing the linear model discrepancy vari-
ance values corresponding to the requested data points. If 1D array_like, data is assumed to
have a centered one sigma confidence interval. If 2D array_like, the values determine the
upper and lower variances and the array is of shape (n_data, 2). If dict, it has the iden-
tifiers in data_idx as its keys with either scalars or 1D array_likes of length 2 as its values.

Notes

The returned model discrepancy variance values must be of linear form, even for those data values that
are returned in logarithmic form by the call_model() method. If not, the possibility exists that the
emulation process will not converge properly.

get_str_repr()
Returns a list of string representations of all additional input arguments with which this ModelLink
subclass was initialized.

MPI_call
Whether call_model() can/should be called by all MPI ranks simultaneously instead of by the con-
troller. By default, only the controller rank calls the model (False).

Type bool

__weakref__
list of weak references to the object (if defined)

_default_model_data
The default model data to use for every instance of this ModelLink subclass.

Type dict

_default_model_parameters
The default model parameters to use for every instance of this ModelLink subclass.

Type dict

call_type
String indicating whether call_model() should be supplied with a single evaluation sample (‘single’)
or a set of samples (‘multi’), or can be supplied with both (‘hybrid’). By default, single model calls are
requested (‘single’).

11.1. Classes 99

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PRISM documentation

Type str

data_err
The upper and lower 1𝜎-confidence levels of provided data points.

Type list of float

data_idx
The user-defined data point identifiers.

Type list of tuples

data_spc
The types of value space ({‘lin’, ‘log’, ‘ln’}) of provided data points.

Type list of str

data_val
The values of provided data points.

Type list of float

multi_call
Whether call_model() can/should be supplied with a set of evaluation samples. At least one of
single_call and multi_call must be True. By default, single model calls are requested (False).

Type bool

n_data
Number of provided data points.

Type int

n_par
Number of model parameters.

Type int

name
Name associated with an instance of this ModelLink subclass. By default, it is set to the name of this
ModelLink subclass. Can be manually manipulated to allow for more user control.

Type str

par_est
The user-defined estimated values of the model parameters. Contains None in places where estimates were
not provided.

Type dict of {float, None}

par_name
List with model parameter names.

Type list of str

par_rng
The lower and upper values of the model parameters.

Type ndarray

single_call
Whether call_model() can/should be supplied with a single evaluation sample. At least one of
single_call and multi_call must be True. By default, single model calls are requested (True).

Type bool

100 Chapter 11. ModelLink

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool

PRISM documentation

11.1.3 PolyLink

class prism.modellink.PolyLink(order=2, *args, **kwargs)
ModelLink class wrapper for a simple polynomial model, used for testing the functionality of the PRISM
pipeline.

Formatting data_idx

x [int] The value that needs to be used for 𝑥 in the function
∑︀

𝑖 𝐶𝑖𝑥
𝑖 to obtain the data value.

__init__(order=2, *args, **kwargs)
Initialize an instance of the PolyLink class.

Other Parameters order (int. Default: 2) – The polynomial order to use for the polynomial
model in this instance. The resulting number of model parameters n_par will be 1+order.

order
Polynomial order used in this PolyLink instance.

Type int

11.1.4 SineWaveLink

class prism.modellink.SineWaveLink(*args, **kwargs)
ModelLink class wrapper for a simple sine wave model, used for testing the functionality of the PRISM
pipeline.

Formatting data_idx

x [int] The value that needs to be used for 𝑥 in the function 𝐴 + 0.1 * 𝐵 * sin(𝐶 * 𝑥 + 𝐷) to obtain the data
value.

11.2 Utilities

prism.modellink.convert_data(model_data)
Converts the provided model_data into a full data dict, taking into account all formatting options, and returns it.

This function can be used externally to check how the provided model_data would be interpreted when provided
to the ModelLink subclass. Its output can be used for the ‘model_data’ input argument.

Parameters model_data (array_like, dict or str) – Anything that can be converted to a dict that
provides model data information.

Returns data_dict (dict) – Dict with the provided model_data converted to its full format.

prism.modellink.convert_parameters(model_parameters)
Converts the provided model_parameters into a full parameters dict, taking into account all formatting options,
and returns it.

This function can be used externally to check how the provided model_parameters would be interpreted when
provided to the ModelLink subclass. Its output can be used for the ‘model_parameters’ input argument.

Parameters model_parameters (array_like, dict or str) – Anything that can be converted to a dict
that provides model parameters information.

11.2. Utilities 101

https://docs.python.org/3/library/functions.html#int

PRISM documentation

Returns par_dict (dict) – Dict with the provided model_parameters converted to its full format.

prism.modellink.test_subclass(subclass, *args, **kwargs)
Tests a provided ModelLink subclass by initializing it with the given args and kwargs and checking if all
required methods can be properly called.

This function needs to be called by all MPI ranks.

Parameters

• subclass (ModelLink subclass) – The ModelLink subclass that requires testing.

• args (positional arguments) – Positional arguments that need to be provided to the construc-
tor of the subclass.

• kwargs (keyword arguments) – Keyword arguments that need to be provided to the con-
structor of the subclass.

Returns modellink_obj (ModelLink object) – Instance of the provided subclass if all tests pass
successfully. Specific exceptions are raised if a test fails.

Note: Depending on the complexity of the model wrapped in the given subclass, this function may take a while
to execute.

102 Chapter 11. ModelLink

CHAPTER 12

Utilities

Provides a collection of functions useful for using/mixing PRISM with other applications.

prism.utils.get_hybrid_lnpost_fn(lnpost_fn, pipeline_obj, *, emul_i=None, unit_space=False,
impl_prior=True, par_dict=False)

Returns a function definition hybrid_lnpost(par_set, *args, **kwargs).

This hybrid_lnpost() function can be used to calculate the natural logarithm of the posterior probability, which
analyzes a given par_set first in the provided pipeline_obj at iteration emul_i and passes it to lnpost_fn if it is
plausible.

This function needs to be called by all MPI ranks.

Parameters

• lnpost_fn (function) – Function definition that needs to be called if the provided
par_set is plausible in iteration emul_i of pipeline_obj. The used call signature is
lnpost_fn(par_set, *args, **kwargs). All MPI ranks will call this function
unless called within the worker_mode context manager.

• pipeline_obj (Pipeline object) – The instance of the Pipeline class that needs to be
used for determining the validity of the proposed sampling step.

Other Parameters

• emul_i (int or None. Default: None) – If int, number indicating the requested emulator
iteration. If None, the last iteration of the emulator will be used.

• unit_space (bool. Default: False) – Bool determining whether or not par_set will be given
in unit space.

• impl_prior (bool. Default: True) – Bool determining whether or not the hybrid_lnpost()
function should use the implausibility values of a given par_set as an additional prior.

• par_dict (bool. Default: False) – Bool determining whether or not par_set will be an
array_like (False) or a dict (True).

Returns hybrid_lnpost (function) – Definition of the function hybrid_lnpost(par_set,

*args, **kwargs).

103

PRISM documentation

See also:

get_walkers() Analyzes proposed init_walkers and returns valid p0_walkers.

worker_mode Special context manager within which all code is executed in worker mode.

Note: The input arguments unit_space and par_dict state in what form par_set will be provided to the hy-
brid_lnpost() function, such that it can be properly converted to the format used in Pipeline. The par_set
that is passed to lnpost_fn is unchanged.

Warning: Calling this function factory will disable all regular logging in pipeline_obj (do_logging set
to False), in order to avoid having the same message being logged every time hybrid_lnpost() is called.

prism.utils.get_walkers(pipeline_obj, *, emul_i=None, init_walkers=None, req_n_walkers=None,
unit_space=False, lnpost_fn=None, **kwargs)

Analyzes proposed init_walkers and returns plausible p0_walkers.

Analyzes sample set init_walkers in the provided pipeline_obj at iteration emul_i and returns all samples that
are plausible to be used as starting positions for MCMC walkers. The provided samples and returned walkers
should be/are given in unit space if unit_space is True.

If init_walkers is None, returns impl_sam instead if it is available.

This function needs to be called by all MPI ranks.

Parameters pipeline_obj (Pipeline object) – The instance of the Pipeline class that needs to
be used for determining the plausibility of the proposed starting positions.

Other Parameters

• emul_i (int or None. Default: None) – If int, number indicating the requested emulator
iteration. If None, the last iteration of the emulator will be used.

• init_walkers (2D array_like, dict, int or None. Default: None) – Sample set of proposed
initial MCMC walker positions. All plausible samples in init_walkers will be returned. If
int, generate an LHD of provided size and return all plausible samples. If None, return
impl_sam corresponding to iteration emul_i instead.

• req_n_walkers (int or None. Default: None) – The minimum required number of plau-
sible starting positions that should be returned. If None, all plausible starting positions in
init_walkers are returned instead.

New in version 1.2.0.

• unit_space (bool. Default: False) – Bool determining whether or not the provided samples
and returned walkers are given in unit space.

• lnpost_fn (function or None. Default: None) – If function, call
get_hybrid_lnpost_fn() using lnpost_fn and the same values for pipeline_obj,
emul_i and unit_space, and return the resulting function definition hybrid_lnpost(). Any
additionally provided kwargs are also passed to it.

Returns

• n_walkers (int) – Number of returned MCMC walkers. Note that this number can be higher
than req_n_walkers if not None.

104 Chapter 12. Utilities

PRISM documentation

• p0_walkers (2D ndarray object or dict) – Array containing plausible starting positions
of valid MCMC walkers. If init_walkers was provided as a dict, p0_walkers will be a dict.

• hybrid_lnpost (function (if lnpost_fn is a function)) – The function returned by
get_hybrid_lnpost_fn() using lnpost_fn, pipeline_obj, emul_i, unit_space and
kwargs as the input values.

See also:

get_hybrid_lnpost_fn() Returns a function definition hybrid_lnpost(par_set, *args,

**kwargs).

worker_mode Special context manager within which all code is executed in worker mode.

Notes

If init_walkers is None and emulator iteration emul_i has not been analyzed yet, a RequestError will be
raised.

If req_n_walkers is not None, a custom Metropolis-Hastings sampling algorithm is used to generate the required
number of starting positions. All plausible samples in init_walkers are used as the start of every MCMC chain.
Note that if the number of plausible samples in init_walkers is small, it is possible that the returned p0_walkers
are not spread out properly over parameter space.

105

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PRISM documentation

106 Chapter 12. Utilities

CHAPTER 13

Projection GUI

13.1 Classes

13.1.1 MainViewerWindow

class prism._gui.widgets.MainViewerWindow(pipeline_obj, *args, **kwargs)
Defines the MainViewerWindow class for the Projection GUI.

This class provides the main window for the GUI and combines all other widgets; layouts; and elements together.

__init__(pipeline_obj, *args, **kwargs)
Initialize an instance of the MainViewerWindow class.

Parameters pipeline_obj (Pipeline object) – Instance of the Pipeline class for which the
GUI needs to be initialized.

Other Parameters

• args (positional arguments) – The positional arguments that must be passed to the con-
structor of the QMainWindow class.

• kwargs (keyword arguments) – The keyword arguments that must be passed to the con-
structor of the QMainWindow class.

about()
Displays a small section with information about the GUI.

This function acts as a Qt slot.

all_call_proj_attr(name, *args, **kwargs)
Calls the requested Projection attribute name using the provided args and kwargs on all ranks.

all_set_proj_attr(name, value)
Sets the requested Projection attribute name to value on all ranks.

107

PRISM documentation

api_reference()
Opens the API reference documentation of the GUI in a webbrowser.

This function acts as a Qt slot.

call_proj_attr(name, *args, **kwargs)
Calls the requested Projection attribute name using the provided args and kwargs on the controller
rank.

closeEvent(*args, **kwargs)
Special closeEvent() event that automatically performs some clean-up operations before the main
window closes.

create_menubar()
Creates the top-level menubar of the main window.

Other widgets can modify this menubar to add additional actions to it.

create_statusbar()
Creates the bottom-level statusbar of the main window, primarily used for displaying extended descriptions
of actions.

get_default_dock_positions()
Returns the default positions of all dock widgets connected to the main window.

get_proj_attr(name)
Gets the value of the requested Projection attribute name on the controller rank.

init()
Sets up the main window after it has been initialized.

This function is mainly responsible for initializing all other widgets that are required to make the GUI
work, and connecting them together.

set_default_dock_positions()
Sets the positions of all dock widgets connected to the main window to their default positions.

This function acts as a Qt slot.

set_proj_attr(name, value)
Sets the requested Projection attribute name to value on the controller rank.

show_pipeline_details_overview()
Creates and shows a dialog containing the output of the details() method for all emulator iterations.

This function acts as a Qt slot.

13.1.2 OverviewDockWidget

class prism._gui.widgets.OverviewDockWidget(main_window_obj, *args, **kwargs)
Defines the OverviewDockWidget class for the Projection GUI.

This class provides the user with the ability to quickly create; draw; view; and save projection figures.

__init__(main_window_obj, *args, **kwargs)
Initialize an instance of the OverviewDockWidget class.

Parameters main_window_obj (MainViewerWindow object) – Instance of the
MainViewerWindow class that acts as the parent of this dock widget.

Other Parameters

108 Chapter 13. Projection GUI

PRISM documentation

• args (positional arguments) – The positional arguments that must be passed to the con-
structor of the QDockWidget class.

• kwargs (keyword arguments) – The keyword arguments that must be passed to the con-
structor of the QDockWidget class.

_create_projection_figure(list_item)
Creates the projection figure requested in the provided list_item, calculating its projection data.

This function is used iteratively by create_projection_figures().

Parameters list_item (QListWidgetItem object) – The item that contains the requested pro-
jection figure.

_details_projection_figure(list_item)
Creates and shows a details dialog for the projection figure requested in the provided list_item.

Parameters list_item (QListWidgetItem object) – The item that contains the requested pro-
jection figure.

_draw_projection_figure(list_item)
Draws the projection figure requested in the provided list_item, creating its Figure instance.

This function is used iteratively by draw_projection_figures().

Parameters list_item (QListWidgetItem object) – The item that contains the requested pro-
jection figure.

closeEvent(*args, **kwargs)
Special closeEvent() event that automatically performs some clean-up operations before the overview
dock widget closes.

close_projection_figures(list_items=None)
Retrieves the projection figures requested in the provided list_items and closes their Figure objects.

This function acts as a Qt slot.

Other Parameters list_items (list of QListWidgetItem objects or None. Default: None) –
The list of items that contains the requested projection figures. If None, all currently selected
list items are used instead.

create_available_context_menu()
Creates the context (right-click) menu for the ‘Available’ overview list.

This menu contains all actions that are available for created (but not drawn) projection figures.

create_draw_projection_figures(list_items=None)
Retrieves the projection figures requested in the provided list_items, calculates their projection data and
draws their Figure objects afterward.

This function is basically a combination of create_projection_figures() and
draw_projection_figures().

This function acts as a Qt slot.

Other Parameters list_items (list of QListWidgetItem objects or None. Default: None) –
The list of items that contains the requested projection figures. If None, all currently selected
list items are used instead.

create_draw_save_projection_figures(list_items=None)
Retrieves the projection figures requested in the provided list_items, calculates their projection data, draws
their Figure objects and saves them afterward.

13.1. Classes 109

https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure
https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure
https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure
https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure

PRISM documentation

This function is basically a combination of create_projection_figures();
draw_projection_figures() and save_projection_figures().

This function acts as a Qt slot.

Other Parameters list_items (list of QListWidgetItem objects or None. Default: None) –
The list of items that contains the requested projection figures. If None, all currently selected
list items are used instead.

create_drawn_context_menu()
Creates the context (right-click) menu for the ‘Drawn’ overview list.

This menu contains all actions that are available for drawn projection figures.

create_projection_figures(list_items=None)
Retrieves the projection figures requested in the provided list_items and creates them, calculating their
corresponding projection data.

This function acts as a Qt slot.

Other Parameters list_items (list of QListWidgetItem objects or None. Default: None) –
The list of items that contains the requested projection figures. If None, all currently selected
list items are used instead.

create_unavailable_context_menu()
Creates the context (right-click) menu for the ‘Unavailable’ overview list.

This menu contains all actions that are available for non-existing projection figures.

delete_projection_figures(list_items=None, *, skip_warning=False)
Retrieves the projection figures requested in the provided list_items and delete them, permanently remov-
ing their corresponding projection data.

This function acts as a Qt slot.

Other Parameters

• list_items (list of QListWidgetItem objects or None. Default: None) – The list of
items that contains the requested projection figures. If None, all currently selected list
items are used instead.

• skip_warning (bool. Default: False) – Whether or not to skip showing the warning asking
the user if they are sure they want to permanently delete all items in list_items. If True, the
answer is taken to be True.

details_available_projection_figure(list_item=None)
Retrieves the projection figure requested in the provided list_item, gathers its properties and shows a details
dialog listing them.

This function is used for projections in the ‘Available’ list.

This function acts as a Qt slot.

Other Parameters list_item (QListWidgetItem object or None. Default: None) – The item
that contains the requested projection figure. If None, the currently selected list item is used
instead.

details_drawn_projection_figure(list_item=None)
Retrieves the projection figure requested in the provided list_item, gathers its properties and shows a details
dialog listing them.

This function is used for projections in the ‘Drawn’ list.

This function acts as a Qt slot.

110 Chapter 13. Projection GUI

PRISM documentation

Other Parameters list_item (QListWidgetItem object or None. Default: None) – The item
that contains the requested projection figure. If None, the currently selected list item is used
instead.

draw_projection_figures(list_items=None)
Retrieves the projection figures requested in the provided list_items and draws them, creating their
Figure instances.

If the auto_show option is True, drawn figures will be shown automatically as well.

This function acts as a Qt slot.

Other Parameters list_items (list of QListWidgetItem objects or None. Default: None) –
The list of items that contains the requested projection figures. If None, all currently selected
list items are used instead.

draw_save_projection_figures(list_items=None)
Retrieves the projection figures requested in the provided list_items, draws their Figure objects and saves
them afterward.

This function is basically a combination of draw_projection_figures() and
save_projection_figures().

This function acts as a Qt slot.

Other Parameters list_items (list of QListWidgetItem objects or None. Default: None) –
The list of items that contains the requested projection figures. If None, all currently selected
list items are used instead.

init()
Sets up the projection overview dock widget after it has been initialized.

This function is mainly responsible for creating the different overview lists and menus that allow the user
to manipulate projection figures.

recreate_projection_figures(list_items=None)
Retrieves the projection figures requested in the provided list_items and recreates them, permanently re-
moving their corresponding projection data and recalculating it.

This function is basically a combination of delete_projection_figures() and
create_projection_figures().

This function acts as a Qt slot.

Other Parameters list_items (list of QListWidgetItem objects or None. Default: None) –
The list of items that contains the requested projection figures. If None, all currently selected
list items are used instead.

redraw_projection_figures(list_items=None)
Retrieves the projection figures requested in the provided list_items and redraws them, closing and recre-
ating their Figure objects.

This function is basically a combination of close_projection_figures() and
draw_projection_figures().

This function acts as a Qt slot.

Other Parameters list_items (list of QListWidgetItem objects or None. Default: None) –
The list of items that contains the requested projection figures. If None, all currently selected
list items are used instead.

13.1. Classes 111

https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure
https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure
https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure

PRISM documentation

save_as_projection_figures(list_items=None)
Retrieves the projection figures requested in the provided list_items and saves their Figure objects, ask-
ing the user where to save each one.

This function basically calls save_projection_figures() with choose set to True.

This function acts as a Qt slot.

Other Parameters list_items (list of QListWidgetItem objects or None. Default: None) –
The list of items that contains the requested projection figures. If None, all currently selected
list items are used instead.

save_projection_figures(list_items=None, *, choose=False)
Retrieves the projection figures requested in the provided list_items and saves their Figure objects.

This function acts as a Qt slot.

Other Parameters

• list_items (list of QListWidgetItem objects or None. Default: None) – The list of
items that contains the requested projection figures. If None, all currently selected list
items are used instead.

• choose (bool. Default: False) – Whether or not the user is allowed to choose where
the projection figure is saved to. If False, it uses the default filename as defined by
_Projection__get_fig_path().

show_available_context_menu()
Shows the ‘Available’ context menu, giving the user access to its actions.

This function acts as a Qt slot.

show_drawn_context_menu()
Shows the ‘Drawn’ context menu, giving the user access to its actions.

This function acts as a Qt slot.

show_projection_figures(list_items=None)
Retrieves the projection figures requested in the provided list_items and shows them in the projection
viewing area.

This function acts as a Qt slot.

Other Parameters list_items (list of QListWidgetItem objects or None. Default: None) –
The list of items that contains the requested projection figures. If None, all currently selected
list items are used instead.

show_unavailable_context_menu()
Shows the ‘Unavailable’ context menu, giving the user access to its actions.

This function acts as a Qt slot.

use_progress_dialog(label, func, *iterables)
Creates a progress dialog with the given label, and executes the requested func using the provided iterables.

Depending on the current settings, this function will either create a ThreadedProgressDialog object
that allows the user to abort the operation (but is slower), or a static dialog that cannot be interrupted.

Parameters

• label (str) – The label that is used as the description of what operation is currently being
executed.

• func (function) – The function that must be called iteratively using the arguments provided
in iterables.

112 Chapter 13. Projection GUI

https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure
https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure

PRISM documentation

• iterables (positional arguments) – All iterables that must be used to call func with.

Returns result (bool) – Whether or not the operations ended successfully, which can be used by
other functions to determine if it should continue.

13.1.3 ViewingAreaDockWidget

class prism._gui.widgets.ViewingAreaDockWidget(main_window_obj, *args, **kwargs)
Defines the ViewingAreaDockWidget class for the Projection GUI.

This class provides the user with an MDI (Multiple Document Interface) area using the QMdiArea class. All
drawn projection figures live in this area and can be interacted with.

__init__(main_window_obj, *args, **kwargs)
Initialize an instance of the ViewingAreaDockWidget class.

Parameters main_window_obj (MainViewerWindow object) – Instance of the
MainViewerWindow class that acts as the parent of this dock widget.

Other Parameters

• args (positional arguments) – The positional arguments that must be passed to the con-
structor of the QDockWidget class.

• kwargs (keyword arguments) – The keyword arguments that must be passed to the con-
structor of the QDockWidget class.

closeEvent(*args, **kwargs)
Special closeEvent() event that automatically performs some clean-up operations before the viewing
area closes.

create_projection_toolbar()
Creates the top-level toolbar of the viewing area, primarily used for manipulating the area subwindows.

get_default_dock_positions()
Returns the default positions of all dock widgets connected to the viewing area.

init()
Sets up the projection viewing area dock widget after it has been initialized.

This function is mainly responsible for enabling the OverviewDockWidget to properly interact and
control the projection figures that have been drawn.

save_view()
Saves the current view of the viewing area to file.

This function acts as a Qt slot.

set_default_dock_positions()
Sets the postions of all dock widgets connected to the viewing area to their default positions.

This function acts as a Qt slot.

13.2 Widgets

13.2.1 GUI Base Layout Classes

Provides a collection of custom QLayout base classes that allow for certain layouts to be standardized.

13.2. Widgets 113

PRISM documentation

13.2.2 GUI Base Widget Classes

Provides a collection of custom QWidget base classes that allow for certain widgets to be standardized.

class prism._gui.widgets.base_widgets.QW_QAction(parent, text, *, shortcut=None,
tooltip=None, statustip=None,
icon=None, triggered=None,
role=None)

Defines the QW_QAction class.

This class provides default settings and extra options for the QAction class.

__init__(parent, text, *, shortcut=None, tooltip=None, statustip=None, icon=None, triggered=None,
role=None)

Initializes the QW_QAction class.

Parameters

• parent (QWidget object or None) – The parent widget for this dialog or None for no
parent.

• text (str) – The label that this action must have.

Other Parameters

• shortcut (QKeySequence or None. Default: None) – The key sequence that must be set
as the shortcut for this action. If None, no shortcut will be set.

• tooltip (str or None. Default: None) – The text that must be set as the tooltip for this
action. If None, the tooltip is set to text. If shortcut is not None, the tooltip will also
include the shortcut.

• statustip (str or None. Default: None) – The text that must be set as the statustip for this
action. If None, the statustip is set to tooltip.

• icon (QIcon object or None. Default: None) – The icon that must be set as the icon for
this action. If None, no icon will be set.

• triggered (function or None. Default: None) – The Qt slot function that must be called
whenever this action is triggered. If None, no slot will connected to this action’s signal.

• role (MenuRole object or None. Default: None) – The menu role that must be set as the
role of this action. If None, it is set to NoRole.

setDetails(*, shortcut=None, tooltip=None, statustip=None)
Uses the provided shortcut; tooltip; and statustip to set the details of this action.

Parameters

• shortcut (QKeySequence or None. Default: None) – The key sequence that must be set
as the shortcut for this action. If None, no shortcut will be set.

• tooltip (str or None. Default: None) – The text that must be set as the tooltip for this
action. If None, the tooltip is set to text. If shortcut is not None, the tooltip will also
include the shortcut.

• statustip (str or None. Default: None) – The text that must be set as the statustip for this
action. If None, the statustip is set to tooltip.

class prism._gui.widgets.base_widgets.QW_QComboBox
Defines the QW_QComboBox class.

This class provides default settings and extra options for the QComboBox class.

114 Chapter 13. Projection GUI

PRISM documentation

class prism._gui.widgets.base_widgets.QW_QEditableComboBox(*args, **kwargs)
Defines the QW_QEditableComboBox class.

This class makes the QW_QComboBox class editable.

class prism._gui.widgets.base_widgets.QW_QLabel
Defines the QW_QLabel class.

This class provides default settings and extra options for the QLabel class.

class prism._gui.widgets.base_widgets.QW_QMenu(parent, title)
Defines the QW_QMenu class.

This class provides default settings and extra options for the QMenu class.

class prism._gui.widgets.base_widgets.QW_QToolBar(parent, window_title)
Defines the QW_QToolBar class.

This class provides default settings and extra options for the QToolBar class.

13.2.3 GUI Widgets Core

Provides a collection of utility functions and the BaseBox class definition, which are core to the functioning of all
GUI widgets.

class prism._gui.widgets.core.BaseBox
Defines the BaseBox base class.

This class is used by many custom QWidget classes as their base. It defines the modified signal, which is
automatically connected to any widget that changes its state.

childEvent(event)
Special childEvent() event that automatically connects the default modified signal of any widget that
becomes a child of this widget.

connect_box(box)
Connect the default modified signal of the provided box to this widget’s modified signal.

get_box_value()
Obtain the value of this widget and return it.

set_box_value(value)
Set the value of this widget to value.

prism._gui.widgets.core.get_box_value(box)
Retrieves the value of the provided widget box and returns it.

prism._gui.widgets.core.get_modified_box_signal(box)
Retrieves the default modified signal of the provided widget box and returns it.

prism._gui.widgets.core.set_box_value(box, value)
Sets the value of the provided widget box to value.

13.2.4 GUI Widget Helpers

Provides a collection of custom QWidget subclasses that provide specific functionalities.

class prism._gui.widgets.helpers.ExceptionDialog(parent, etype, value, tb)
Defines the ExceptionDialog class for the Projection GUI.

This class takes a set of exception details and converts it into a format that can be shown using a dialog.

13.2. Widgets 115

PRISM documentation

__init__(parent, etype, value, tb)
Initialize an instance of the ExceptionDialog class.

Parameters

• parent (QWidget object or None) – The parent widget for this dialog or None for no
parent.

• etype (Exception class) – The Exception class that is associated with this error.

• value (Exception object) – The Exception instance that is associated with this error.

• tb (traceback object) – The corresponding traceback object.

create_traceback_box()
Creates a special box for the exception dialog that contains the traceback information and returns it.

format_exception()
Formats the exception provided during initialization and returns it.

format_traceback()
Formats the traceback provided during initialization and returns it.

init()
Sets up the exception dialog after it has been initialized.

This function is mainly responsible for gathering all required information; formatting it; and drawing the
dialog.

toggle_traceback_box()
Toggles the visibility of the traceback box and updates the dimensions of the exception dialog accordingly.

This function acts as a Qt slot.

update_size()
Updates the dimensions of the exception dialog depending on its current state (traceback box visibility).

class prism._gui.widgets.helpers.OverviewListWidget(*args, **kwargs)
Defines the OverviewListWidget class.

This class defines the overview lists that are used by the OverviewDockWidget class.

__init__(*args, **kwargs)
Initialize an instance of the OverviewListWidget class.

Parameters

• args (positional arguments) – The positional arguments that need to be passed to init().

• kwargs (keyword arguments) – The keyword arguments that need to be passed to init().

init(*, hcubes_list, status_tip, context_menu, activated)
Sets up the overview list after it has been initialized.

This function is mainly responsible for creating the list; adding the items to it; and setting some properties.

Parameters

• hcubes_list (list of str) – List of projection hypercube names that must be used to initialize
this overview list with.

• statustip (str) – The statustip that will be displayed in the statusbar whenever this overview
list is hovered.

• context_menu (function) – The function that must be called whenever the context menu
is requested.

116 Chapter 13. Projection GUI

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

PRISM documentation

• activated (function) – The function that must be called whenever an item in this overview
list is activated. This corresponds to the default action.

class prism._gui.widgets.helpers.ThreadedProgressDialog(main_window_obj, *args,
**kwargs)

Defines the ThreadedProgressDialog class for the Projection GUI.

This class provides a QProgressDialog class that automatically executes a provided operation on a separate
thread, allowing for the user to interrupt it.

__call__()
Calls and returns the result of open().

__init__(main_window_obj, *args, **kwargs)
Initialize an instance of the ThreadedProgressDialog class.

Parameters

• main_window_obj (MainViewerWindow object) – Instance of the
MainViewerWindow class that acts as the parent of progress dialog.

• args (positional arguments) – The positional arguments that need to be passed to init().

• kwargs (keyword arguments) – The keyword arguments that need to be passed to init().

init(label, func, *iterables)
Sets up the progress dialog after it has been initialized.

This function is mainly responsible for preparing the dialog to be opened and the func function to be
executed.

Parameters

• label (str) – The label that is used as the description of what operation is currently being
executed.

• func (function) – The function that must be called iteratively using the arguments provided
in iterables.

• iterables (positional arguments) – All iterables that must be used to call func with.

kill_threads()
Terminates all currently running threads besides the main thread (on all MPI ranks) and returns control to
the main thread.

This function is the sole way to abort the operation.

This function acts as a Qt slot.

open()
Opens the progress dialog and starts the execution of the requested operation.

Returns result (bool) – Whether or not the operations ended successfully, which can be used by
other functions to determine if it should continue.

raise_exception(exception)
Qt slot that raises a provided exception.

set_successful_finish()
Qt slot that marks the operation as ‘successful’.

prism._gui.widgets.helpers.show_exception_details(parent, *args, **kwargs)
Creates an instance of the ExceptionDialog class and shows it.

Parameters parent (QWidget object or None) – The parent widget for this dialog or None for no
parent.

13.2. Widgets 117

PRISM documentation

Other Parameters

• args (positional arguments) – The positional arguments that must be passed to the construc-
tor of the ExceptionDialog class.

• kwargs (keyword arguments) – The keyword arguments that must be passed to the construc-
tor of the ExceptionDialog class.

13.2.5 GUI Preferences

GUI Options

Provides the main QDialog subclass that creates the preferences menu and keeps track of all internally saved options.
The window used for the kwargs dicts is defined in kwargs_dicts.

class prism._gui.widgets.preferences.options.OptionsDialog(main_window_obj,
*args, **kwargs)

Defines the OptionsDialog class for the Projection GUI.

This class provides both the ‘Preferences’ dialog and the functions that are required to load; save; set; and
change them.

__call__()
Qt slot that shows the options dialog in the center of the main window.

__init__(main_window_obj, *args, **kwargs)
Initialize an instance of the OptionsDialog class.

Parameters main_window_obj (MainViewerWindow object) – Instance of the
MainViewerWindow class that acts as the parent of this dialog.

Other Parameters

• args (positional arguments) – The positional arguments that must be passed to the con-
structor of the QDialog class.

• kwargs (keyword arguments) – The keyword arguments that must be passed to the con-
structor of the QDialog class.

closeEvent(*args, **kwargs)
Special closeEvent() event that makes sure that all dialogs will be closed related to the options menu,
and discards all changes made.

create_entry(name, box, default)
Creates a new OptionsEntry instance, using the provided name, box and default, and registers it in the
options dialog.

Parameters

• name (str) – The name of this options entry.

• box (QWidget object) – The widget that will hold the values of this entry.

• default (object) – The default value of this entry.

create_group(name, options_list)
Creates a new option group with the given name and adds the options defined in options_list to it.

This function acts as a base function called by create_group_ functions.

Parameters

• name (str) – The name of this option group.

118 Chapter 13. Projection GUI

PRISM documentation

• options_list (list of str) – A list containing the names of all options that need to be added
to this group.

Returns group (QGroupBox object) – The created option group.

create_group_buttons(window_layout)
Creates the button box that is shown at the bottom of the options dialog and registers it in the provided
window_layout.

create_group_fonts()
Creates the ‘Fonts’ group and returns it.

create_group_interface()
Creates the ‘Interface’ group and returns it.

create_group_proj_grid()
Creates the ‘Projection grid’ group and returns it.

create_group_proj_kwargs()
Creates the ‘Projection keywords’ group and returns it.

create_option_align()
Creates the ‘align’ option and returns it.

This option sets the value of the ‘align’ projection parameter.

create_option_auto_show()
Creates the ‘auto_show’ option and returns it.

This option sets whether the projection subwindows are automatically shown whenever created.

create_option_auto_tile()
Creates the ‘auto_tile’ option and returns it.

This option sets whether the projection subwindows are automatically tiled.

create_option_dpi()
Creates the ‘dpi’ option and returns it.

This option allows for the DPI used in the GUI to be modified.

create_option_kwargs_dicts()
Creates the ‘kwargs_dicts’ option and returns it.

This option allows for the KwargsDictDialog to be shown to the user. This dialog is able to set the
values of all ‘XXX_kwargs’ projection parameters.

create_option_progress_dialog()
Creates the ‘progress_dialog’ option and returns it.

This option sets whether a threaded progress dialog is used for some operations.

create_option_proj_depth()
Creates the ‘proj_depth’ option and returns it.

This option sets the value of the ‘proj_depth’ projection parameter.

create_option_proj_res()
Creates the ‘proj_res’ option and returns it.

This option sets the value of the ‘proj_res’ projection parameter.

create_option_show_cuts()
Creates the ‘show_cuts’ option and returns it.

This option sets the value of the ‘show_cuts’ projection parameter.

13.2. Widgets 119

PRISM documentation

create_option_smooth()
Creates the ‘smooth’ option and returns it.

This option sets the value of the ‘smooth’ projection parameter.

create_option_text_fonts()
Creates the ‘text_fonts’ option and returns it.

This option allows for the fonts used in the GUI to be modified.

create_option_use_par_space()
Creates the ‘use_par_space’ option and returns it.

This option sets the value of the ‘use_par_space’ projection parameter.

create_tab(name, groups_list)
Creates a new options tab with the given name and adds the groups defined in groups_list to it.

This function acts as a base function called by create_tab_ functions.

Parameters

• name (str) – The name of this options tab.

• groups_list (list of str) – A list containing the names of all option groups that need to be
added to this tab.

Returns

• tab (QWidget object) – The created options tab.

• name (str) – The name of this options tab as provided with name. This variable is mainly
returned such that it is easier to pass tab names between functions.

create_tab_appearance()
Creates the ‘Appearance’ tab and returns it.

create_tab_general()
Creates the ‘General’ tab and returns it.

disable_save_button()
Qt slot that disables the save button at the bottom of the options dialog. The save button is disabled
whenever no changes have been made to any option entry.

discard_options()
Discards the current values of all option entries and sets them back to their saved values.

This function acts as a Qt slot.

enable_save_button()
Qt slot that enables the save button at the bottom of the options dialog. The save button is enabled if at
least one change has been made to any option entry.

get_option(name)
Returns the value of the option entry associated with the given name.

init()
Sets up the options dialog after it has been initialized.

This function is mainly responsible for initializing all option entries that the GUI has, and creating a
database for them. It also creates the layout of the options dialog.

reset_options()
Resets the saved and current values of all option entries back to their default values.

This function acts as a Qt slot.

120 Chapter 13. Projection GUI

PRISM documentation

save_options()
Saves all current values of all option entries.

Option entries that affect projection parameters are automatically modified as well.

This function acts as a Qt slot.

class prism._gui.widgets.preferences.options.OptionsEntry(parent, name, box, de-
fault)

Defines the OptionsEntry class.

This class is used as a container for making option entries in the OptionsDialog class.

__init__(parent, name, box, default)
Initialize an instance of the OptionsEntry class.

Parameters

• parent (QWidget object) – The widget to use as the parent of this entry.

• name (str) – The name of this options entry.

• box (QWidget object) – The widget that will hold the values of this entry.

• default (object) – The default value of this entry.

discard_value()
Qt slot that discards the current value and sets it back to its saved value.

init()
Sets up the options entry after it has been initialized.

This function is mainly responsible for making sure that the current and saved values of this entry are set
to its default value.

reset_value()
Qt slot that resets the current value of this options entry to its default value.

save_value()
Qt slot that saves the current value of this options entry.

box
The widget box that contains this options entry.

Type QWidget object

default
The default value of this options entry.

Type object

name
The name of this options entry.

Type str

value
The currently saved value of this options entry.

Type object

GUI Kwargs Dicts Options

Provides a custom QDialog subclass that allows for the projection keyword argument dicts to be modified properly
in the Projection GUI preferences.

13.2. Widgets 121

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

PRISM documentation

class prism._gui.widgets.preferences.kwargs_dicts.KwargsDictBoxLayout(options_dialog_obj,
*args,
**kwargs)

Defines the KwargsDictBoxLayout class for the preferences window.

This class provides the options entry box that gives the user access to a separate window, where the various
different keyword dicts can be modified.

__init__(options_dialog_obj, *args, **kwargs)
Initialize an instance of the KwargsDictBoxLayout class.

Parameters options_dialog_obj (OptionsDialog object) – Instance of the
OptionsDialog class that acts as the parent of the KwargsDictDialog this
layout creates.

Other Parameters

• args (positional arguments) – The positional arguments that must be passed to the con-
structor of the QHBoxLayout class.

• kwargs (keyword arguments) – The keyword arguments that must be passed to the con-
structor of the QHBoxLayout class.

add_dict(*args, **kwargs)
Adds a new kwargs dict to the box layout, by calling the add_page() method using the provided args
and kwargs.

init()
Sets up the box layout after it has been initialized.

This function is mainly responsible for initializing the KwargsDictDialog class and binding it.

class prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialog(options_dialog_obj,
*args,
**kwargs)

Defines the KwargsDictDialog class for the preferences window.

This class provides the ‘Projection keyword argument dicts’ dialog, which allows for the various different
kwargs dicts to be modified by the user.

__call__()
Qt slot that shows the kwargs dict dialog in the center of the preferences window.

__init__(options_dialog_obj, *args, **kwargs)
Initialize an instance of the KwargsDictDialog class.

Parameters options_dialog_obj (OptionsDialog object) – Instance of the
OptionsDialog class that acts as the parent of this dialog.

Other Parameters

• args (positional arguments) – The positional arguments that must be passed to the con-
structor of the QDialog class.

• kwargs (keyword arguments) – The keyword arguments that must be passed to the con-
structor of the QDialog class.

add_page(name, option_key, tooltip, *args, **kwargs)
Initializes a new KwargsDictDialogPage object with name name and adds it to this dialog.

Parameters

• name (str) – The name that this kwargs dict page will have.

122 Chapter 13. Projection GUI

PRISM documentation

• option_key (str) – The name of the options entry that this page will create. The value
of option_key must correspond to the name the associated dict has in the project()
method.

• tooltip (str) – The tooltip that must be used for this kwargs dict page.

Other Parameters

• args (positional arguments) – The positional arguments that must be passed to the con-
structor of the KwargsDictDialogPage class.

• kwargs (keyword arguments) – The keyword arguments that must be passed to the con-
structor of the KwargsDictDialogPage class.

init()
Sets up the kwargs dict dialog after it has been initialized.

This function is mainly responsible for setting up the layout of the dialog, and making sure that new kwargs
dict pages can be added.

class prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage(kwargs_dict_dialog_obj,
name,
std_entries,
banned_entries,
*args,
**kwargs)

Defines the KwargsDictDialogPage class for the kwargs dict dialog.

This class provides the tab/page in the kwargs dict dialog where the items of the associated kwargs dict can be
viewed and modified by the user.

__init__(kwargs_dict_dialog_obj, name, std_entries, banned_entries, *args, **kwargs)
Initialize an instance of the KwargsDictDialogPage class.

Parameters

• kwargs_dict_dialog_obj (KwargsDictDialog object) – Instance of the
KwargsDictDialog class that initialized this kwargs dict page.

• name (str) – The name of this kwargs dict page.

• std_entries (list of str) – A list of all standard entry types that this kwargs dict should
accept.

• banned_entries (list of str) – A list of all entry types that this kwargs dict should not
accept. Usually, these entry types are used by PRISM and therefore should not be modified
by the user.

Other Parameters

• args (positional arguments) – The positional arguments that must be passed to the con-
structor of the BaseBox class.

• kwargs (keyword arguments) – The keyword arguments that must be passed to the con-
structor of the BaseBox class.

add_editable_entry()
Adds a new editable entry to the kwargs dict page, which allows for the user to edit the contents of the
kwargs dict.

This function acts as a Qt slot.

create_type_alpha()
Creates the ‘alpha’ entry and returns it.

13.2. Widgets 123

PRISM documentation

create_type_cmap()
Creates the ‘cmap’ entry and returns it.

create_type_color()
Creates the ‘color’ entry and returns it.

create_type_dpi()
Creates the ‘dpi’ entry and returns it.

create_type_figsize()
Creates the ‘figsize’ entry and returns it.

create_type_linestyle()
Creates the ‘linestyle’ entry and returns it.

create_type_linewidth()
Creates the ‘linewidth’ entry and returns it.

create_type_marker()
Creates the ‘marker’ entry and returns it.

create_type_markersize()
Creates the ‘markersize’ entry and returns it.

create_type_scale(axis)
Base function for creating the entry types ‘xscale’ and ‘yscale’.

create_type_xscale()
Creates the ‘xscale’ entry and returns it.

create_type_yscale()
Creates the ‘yscale’ entry and returns it.

entry_type_selected(entry_type, kwargs_box)
Qt slot that modifies the field box associated with the provided kwargs_box to given entry_type.

Parameters

• entry_type (str) – The entry type that is requested for the field box.

• kwargs_box (QW_QEditableComboBox object) – The combobox that is used for set-
ting the entry type of this entry.

get_box_value()
Returns the current value of the kwargs dict page.

Returns page_dict (dict) – A dict containing all valid entries that are currently on this kwargs
dict page. Any invalid entries (banned or empty ones) are ignored.

init()
Sets up the kwargs dict page after it has been initialized.

This function is mainly responsibe for creating the layout of the page; determining what entry types are
available; and preparing for the user to add entries.

remove_editable_entry(kwargs_box)
Removes the editable entry associated with the provided kwargs_box.

This function acts as a Qt slot.

Parameters kwargs_box (QW_QEditableComboBox object) – The combobox that is used
for setting the entry type of this entry.

set_box_value(page_dict)
Sets the current value of the kwargs dict page to page_dict.

124 Chapter 13. Projection GUI

PRISM documentation

Parameters page_dict (dict) – A dict containing all entries that this kwargs dict page must have.
Current entries that are also in page_dict will be reused, otherwise they are deleted.

GUI Custom Option Boxes

Provides a collection of QWidget subclasses to be used as custom option entry boxes in the OptionsDialog class
or KwargsDictDialogPage class.

class prism._gui.widgets.preferences.custom_boxes.ColorBox(*args, **kwargs)
Defines the ColorBox class.

This class is used for making the ‘color’ entry in the KwargsDictDialogPage class.

__init__(*args, **kwargs)
Initialize an instance of the ColorBox class.

Other Parameters

• args (positional arguments) – The positional arguments that must be passed to the con-
structor of the BaseBox class.

• kwargs (keyword arguments) – The keyword arguments that must be passed to the con-
structor of the BaseBox class.

static convert_to_mpl_color(qcolor)
Converts a provided QColor object color to a matplotlib color.

Parameters qcolor (QColor object) – The instance of the QColor class must be converted to
a matplotlib color.

Returns color (str) – The corresponding matplotlib color. The returned color is always written
in HEX.

static convert_to_qcolor(color)
Converts a provided matplotlib color color to a QColor object.

Parameters color (str) – The matplotlib color that must be converted. If color is a float string,
an error will be raised, as Qt5 does not accept those.

Returns qcolor (QColor object) – The instance of the QColor class that corresponds to the
provided color.

create_color_combobox()
Creates a combobox that holds all default colors accepted by matplotlib and returns it.

create_color_label()
Creates a special label that shows the currently selected or hovered color, and returns it.

static create_color_pixmap(color, size)
Creates a QPixmap object consisting of the given color with the provided size.

Parameters

• color (str) – The matplotlib color that must be used for the pixmap.

• size (tuple) – The width and height dimension values of the pixmap to be created.

Returns pixmap (QPixmap object) – The instance of the QPixmap class that was created from
the provided color and size.

get_box_value()
Returns the current (valid) color value of the color combobox.

Returns color (str) – The current valid matplotlib color value.

13.2. Widgets 125

PRISM documentation

init()
Sets up the color box entry after it has been initialized.

This function is mainly responsible for creating the color wheel and color label, that allow the user to
quickly cycle through different color options.

set_box_value(value)
Sets the current (default) color value to value.

Parameters value (str) – The matplotlib color value that must be set for this colorbox.

set_color(color)
Sets the current color to the provided color, and updates the entry in the combobox and the label accord-
ingly.

This function acts as a Qt slot.

Parameters color (str) – The color that needs to be used as the current color. The provided
color can be any string that is accepted as a color by matplotlib. If color is invalid, it is set to
the current default color instead.

set_color_label(color)
Sets the current color label to the provided color.

This function acts as a Qt slot.

Parameters color (str) – The color that needs to be used as the current color label. The provided
color can be any string that is accepted as a color by matplotlib. If color is invalid, it is set to
the current default color instead.

Returns default_flag (bool) – Whether or not the color label is currently set to the default color.
This happens when color is an invalid color.

show_colorpicker()
Shows the colorwheel picker dialog to the user, allowing for any color option to be selected.

This function acts as a Qt slot.

class prism._gui.widgets.preferences.custom_boxes.ColorMapBox(*args, **kwargs)
Defines the ColorMapBox class.

This class is used for making the ‘cmap’ entry in the KwargsDictDialogPage class.

__init__(*args, **kwargs)
Initialize an instance of the ColorMapBox class.

Other Parameters

• args (positional arguments) – The positional arguments that must be passed to the con-
structor of the BaseBox class.

• kwargs (keyword arguments) – The keyword arguments that must be passed to the con-
structor of the BaseBox class.

cmap_selected(cmap)
Qt slot that checks a provided cmap and shows an error message if cmap is a terrible colormap.

static create_cmap_icon(cmap, size)
Creates a QIcon object of the given cmap with the provided size.

Parameters

• cmap (Colormap object or str) – The colormap for which an icon needs to be created.

126 Chapter 13. Projection GUI

https://matplotlib.org/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap

PRISM documentation

• size (tuple) – A tuple containing the width and height dimension values of the icon to be
created.

Returns icon (QIcon object) – The instance of the QIcon class that was created from the
provided cmap and size.

get_box_value()
Returns the current colormap of the colormap box.

Returns cmap (Colormap object) – The currently selected colormap.

set_box_value(cmap)
Sets the current colormap to cmap.

Parameters cmap (Colormap object) – The colormap that must be used for this colormap box.

class prism._gui.widgets.preferences.custom_boxes.DefaultBox(*args, **kwargs)
Defines the DefaultBox class.

This class is used for making a non-standard entry in the KwargsDictDialogPage class. It currently
supports inputs of type bool; float; int; and str.

__init__(*args, **kwargs)
Initialize an instance of the DefaultBox class.

Other Parameters

• args (positional arguments) – The positional arguments that must be passed to the con-
structor of the BaseBox class.

• kwargs (keyword arguments) – The keyword arguments that must be passed to the con-
structor of the BaseBox class.

create_field_box(value_type)
Creates a field box for the provided type value_type and replaces the current field box with it.

This function acts as a Qt slot.

Parameters value_type ({‘bool’; ‘float’; ‘int’; ‘str’}) – The string that defines what type of field
box is requested.

create_type_bool()
Creates the field box for values of type ‘bool’ and returns it.

create_type_float()
Creates the field box for values of type ‘float’ and returns it.

create_type_int()
Creates the field box for values of type ‘int’ and returns it.

create_type_str()
Creates the field box for values of type ‘str’ and returns it.

get_box_value()
Returns the current value of the field box.

Returns value (bool, float, int or str) – The current value of this default box.

init()
Sets up the non-standard default box entry after it has been initialized.

This function is mainly responsible for creating the type combobox and allowing for different field boxes
to be used for different value types.

13.2. Widgets 127

https://matplotlib.org/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap
https://matplotlib.org/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap

PRISM documentation

set_box_value(value)
Sets the value type to type(value) and the field value to value.

Parameters value (bool, float, int or str) – The value to use for this default box. The type of
value determines which field box must be used.

class prism._gui.widgets.preferences.custom_boxes.FigSizeBox(*args, **kwargs)
Defines the FigSizeBox class.

This class is used for making the ‘figsize’ entry in the KwargsDictDialogPage class.

__init__(*args, **kwargs)
Initialize an instance of the FigSizeBox class.

Other Parameters

• args (positional arguments) – The positional arguments that must be passed to the con-
structor of the BaseBox class.

• kwargs (keyword arguments) – The keyword arguments that must be passed to the con-
structor of the BaseBox class.

get_box_value()
Returns the current width and height of this figsize box and returns it.

Returns figsize (tuple) – A tuple containing the width and height values of the figsize, formatted
as (width, height).

init()
Sets up the figure size entry after it has been initialized.

This function is mainly responsible for simply creating the two double spinboxes that allow for the width
and height to be set.

set_box_value(value)
Sets the current value of the figsize box to value.

Parameters value (tuple) – A tuple containing the width and height values of the figsize, for-
matted as (width, height).

13.3 Functions

prism._gui.start_gui(pipeline_obj)
Creates an instance of QApplication or retrieves it if one already exists, and starts Crystal, PRISM’s Projec-
tion GUI.

Crystal provides an interactive way of creating projection figures, as opposed to the static and linear method
provided by project(). It is made to make it easier to create; view; compare; and analyze large numbers of
projection figures. All options available in the project() method can also be accessed through Crystal.

As with all Pipeline user methods, this function must be called by all MPI ranks.

New in version 1.2.0.

Parameters pipeline_obj (Pipeline object) – The instance of the Pipeline class for which
Crystal must be initialized.

Returns main_window_obj (MainViewerWindow object) – The instance of the
MainViewerWindow class that was created for drawing Crystal. Can be used for
debugging purposes.

128 Chapter 13. Projection GUI

PRISM documentation

Note: This function can also be accessed through the crystal() method.

13.3. Functions 129

PRISM documentation

130 Chapter 13. Projection GUI

CHAPTER 14

Internal

Contains a collection of support classes/functions for the PRISM package.

exception prism._internal.FeatureWarning
Generic warning raised for experimental features in PRISM.

General purpose warning class, raised whenever a feature is used that should be considered experimental. Its
behavior and API are subject to change, or the entire feature may be removed without a deprecation period.

__weakref__
list of weak references to the object (if defined)

exception prism._internal.RequestError
Generic exception raised for invalid action requests in the PRISM pipeline.

General purpose exception class, raised whenever a requested action cannot be executed due to it not being
allowed or possible in the current state of the Pipeline instance.

__weakref__
list of weak references to the object (if defined)

exception prism._internal.RequestWarning
Generic warning raised for (future) action requests in the PRISM pipeline that may not be useful.

General purpose warning class, raised whenever a requested action may not produce appropriate or expected
results due to the current state of the Pipeline instance. It is also raised if an obtained result can lead to such
an action in the future.

__weakref__
list of weak references to the object (if defined)

class prism._internal.CFilter(MPI_rank)
Custom Filter class that only allows the controller rank to log messages to the logfile. Calls from worker
ranks are ignored.

class prism._internal.PRISM_Logger(*args, **kwargs)
Special Logger class that allows for special filters to be set more easily.

131

https://docs.python.org/3/library/logging.html#logging.Filter
https://docs.python.org/3/library/logging.html#logging.Logger

PRISM documentation

class prism._internal.RFilter(MPI_rank)
Custom Filter class that prepends the world rank of the MPI process that calls it to the logging message. If
the size of MPI.COMM_WORLD is 1, this filter does nothing.

prism._internal.check_compatibility(emul_version)
Checks if the provided emul_version is compatible with the current version of PRISM. Raises a
RequestError if False and indicates which version of PRISM still supports the provided emul_version.

prism._internal.check_vals(values, name, *args)
Checks if all values in provided input argument values with name meet all criteria given in args. If no criteria
are given, it is checked if all values are finite. Returns values (0 or 1 in case of bool) if True and raises a
ValueError or TypeError if False.

Parameters

• values (array_like of {bool; complex; float; int; str}) – The values to be checked against all
given criteria in args. It must be possible to convert values to a ndarray object.

• name (str) – The name of the input argument, which is used in the error message if a
criterion is not met.

• args (positional arguments in {‘bool’; ‘complex’; ‘float’; ‘int’; ‘neg’; ‘nneg’; ‘normal’;
‘npos’; ‘nzero’; ‘pos’; ‘str’}) – Sequence of strings determining the criteria that values
must meet. If args is empty, it is checked if values are finite.

Returns return_values (array_like of {complex; float; int; str}) – If args contained ‘bool’, returns
0s or 1s. Else, returns values.

Notes

If values contains integers, but args contains ‘float’, return_values will be cast as float.

prism._internal.get_bibtex()
Prints a string that gives the BibTeX entry for citing the PRISM paper (Van der Velden et al. 2019, ApJS, 242,
22).

prism._internal.get_PRISM_File(prism_hdf5_file)
Returns a class definition PRISM_File(mode, emul_s=None, **kwargs).

This class definition is a specialized version of the File class with the filename automatically set to
prism_hdf5_file and added logging to the constructor and destructor methods.

Parameters prism_hdf5_file (str) – Absolute path to the master HDF5-file that is used in a
Pipeline instance.

Returns PRISM_File (class) – Definition of the class PRISM_File(mode, emul_s=None,

**kwargs).

prism._internal.get_formatter()
Returns a Formatter object containing the default logging formatting.

prism._internal.get_handler(filename)
Returns a Handler object containing the default logging handling settings.

prism._internal.get_info()
Prints a string that gives an overview of all information relevant to the PRISM package distribution.

prism._internal.getCLogger(name=None)
Creates a PRISM_Logger instance with name, adds the CFilter to it and returns it.

132 Chapter 14. Internal

https://docs.python.org/3/library/logging.html#logging.Filter
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/logging.html#logging.Formatter
https://docs.python.org/3/library/logging.html#logging.Handler

PRISM documentation

prism._internal.getLogger(name=None, filters=None)
Creates a PRISM_Logger instance with name and adds the provided filters to it. The returned
PRISM_Logger instance is a child of the base PRISM_Logger created with set_base_logger(), but
has its name changed (such that the parent name does not show up in the log-file).

Other Parameters

• name (str or None. Default: None) – The name of the PRISM_Logger instance to create.
If None, initialize the base PRISM_Logger instead.

• filters (list of str or None. Default: None) – List of strings naming the filters that must be
applied to the created PRISM_Logger instance. If None or the PRISM_Logger instance
already existed, no filters will be applied.

Returns logger (PRISM_Logger object) – The created PRISM_Logger instance.

prism._internal.getRLogger(name=None)
Creates a PRISM_Logger instance with name, adds the RFilter to it and returns it.

prism._internal.move_logger(working_dir)
Moves the base PRISM_Logger from the current working directory to the given working_dir, and then restarts
it again.

Parameters working_dir (str) – String containing the directory the log-file needs to be moved to.

prism._internal.np_array(obj, *args, **kwargs)
Returns np.array(obj, *args, copy=False, **kwargs).

prism._internal.set_base_logger(filename=None)
Initializes the base PRISM_Logger, from which all other PRISM_Logger instances are derived.

Other Parameters filename (str or None. Default: None) – String containing the name of the log-
file that is opened. If None, a new log-file will be created.

133

PRISM documentation

134 Chapter 14. Internal

CHAPTER 15

Acknowledgements

Special thanks to Alan Duffy, Darren Croton, Simon Mutch and Manodeep Sinha for providing many valuable sug-
gestions and constructive feedback points. Huge thanks to James Josephides for making the PRISM logo.

135

PRISM documentation

136 Chapter 15. Acknowledgements

Python Module Index

_
prism._gui.widgets.base_layouts, 113
prism._gui.widgets.base_widgets, 113
prism._gui.widgets.core, 115
prism._gui.widgets.helpers, 115
prism._gui.widgets.preferences.custom_boxes,

125
prism._gui.widgets.preferences.kwargs_dicts,

121
prism._gui.widgets.preferences.options,

118
prism._internal, 129

u
prism.utils, 102

137

PRISM documentation

138 Python Module Index

Index

Symbols
_ModelLink__set_model_data()

(prism.modellink.ModelLink method), 94
_ModelLink__set_model_parameters()

(prism.modellink.ModelLink method), 94
_Projection__analyze_proj_hcube()

(prism.Pipeline method), 57
_Projection__draw_2D_proj_fig()

(prism.Pipeline method), 57
_Projection__draw_3D_proj_fig()

(prism.Pipeline method), 57
_Projection__get_default_input_arguments()

(prism.Pipeline method), 57
_Projection__get_default_parameters()

(prism.Pipeline method), 57
_Projection__get_fig_path() (prism.Pipeline

method), 58
_Projection__get_grid_idx() (prism.Pipeline

method), 58
_Projection__get_hcube_name()

(prism.Pipeline method), 58
_Projection__get_proj_data()

(prism.Pipeline method), 58
_Projection__get_proj_hcube()

(prism.Pipeline method), 58
_Projection__get_proj_space()

(prism.Pipeline method), 59
_Projection__get_req_hcubes()

(prism.Pipeline method), 59
_Projection__prepare_projections()

(prism.Pipeline method), 59
_Projection__process_input_arguments()

(prism.Pipeline method), 59
_Projection__read_proj_space()

(prism.Pipeline method), 60
_Projection__save_data() (prism.Pipeline

method), 60
_Projection__set_parameters()

(prism.Pipeline method), 60

__call__() (prism.Pipeline method), 60
__call__() (prism._gui.widgets.helpers.ThreadedProgressDialog

method), 117
__call__() (prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialog

method), 122
__call__() (prism._gui.widgets.preferences.options.OptionsDialog

method), 118
__enter__() (prism._pipeline.WorkerMode method),

75
__exit__() (prism._pipeline.WorkerMode method),

75
__init__() (prism.Pipeline method), 60
__init__() (prism._gui.widgets.MainViewerWindow

method), 107
__init__() (prism._gui.widgets.OverviewDockWidget

method), 108
__init__() (prism._gui.widgets.ViewingAreaDockWidget

method), 113
__init__() (prism._gui.widgets.base_widgets.QW_QAction

method), 114
__init__() (prism._gui.widgets.helpers.ExceptionDialog

method), 115
__init__() (prism._gui.widgets.helpers.OverviewListWidget

method), 116
__init__() (prism._gui.widgets.helpers.ThreadedProgressDialog

method), 117
__init__() (prism._gui.widgets.preferences.custom_boxes.ColorBox

method), 125
__init__() (prism._gui.widgets.preferences.custom_boxes.ColorMapBox

method), 126
__init__() (prism._gui.widgets.preferences.custom_boxes.DefaultBox

method), 127
__init__() (prism._gui.widgets.preferences.custom_boxes.FigSizeBox

method), 128
__init__() (prism._gui.widgets.preferences.kwargs_dicts.KwargsDictBoxLayout

method), 122
__init__() (prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialog

method), 122
__init__() (prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage

method), 123

139

PRISM documentation

__init__() (prism._gui.widgets.preferences.options.OptionsDialog
method), 118

__init__() (prism._gui.widgets.preferences.options.OptionsEntry
method), 121

__init__() (prism._pipeline.WorkerMode method),
75

__init__() (prism.emulator.Emulator method), 79
__init__() (prism.modellink.GaussianLink method),

93
__init__() (prism.modellink.ModelLink method), 95
__init__() (prism.modellink.PolyLink method), 101
__weakref__ (prism._internal.FeatureWarning

attribute), 131
__weakref__ (prism._internal.RequestError at-

tribute), 131
__weakref__ (prism._internal.RequestWarning

attribute), 131
__weakref__ (prism._pipeline.WorkerMode attribute),

77
__weakref__ (prism.emulator.Emulator attribute), 87
__weakref__ (prism.modellink.ModelLink attribute),

99
_assign_data_idx() (prism.emulator.Emulator

method), 79
_assign_emul_s() (prism.emulator.Emulator

method), 80
_call_model() (prism.Pipeline method), 61
_check_future_compat()

(prism.emulator.Emulator method), 81
_check_md_var() (prism.modellink.ModelLink

method), 96
_check_mod_set() (prism.modellink.ModelLink

method), 96
_check_sam_set() (prism.modellink.ModelLink

method), 96
_cleanup_emul_files()

(prism.emulator.Emulator method), 81
_compile_code_snippets() (prism.Pipeline

method), 61
_construct_iteration()

(prism.emulator.Emulator method), 81
_create_new_emulator()

(prism.emulator.Emulator method), 81
_create_projection_figure()

(prism._gui.widgets.OverviewDockWidget
method), 109

_default_model_data (prism.modellink.ModelLink
attribute), 99

_default_model_parameters
(prism.modellink.ModelLink attribute), 99

_details_projection_figure()
(prism._gui.widgets.OverviewDockWidget
method), 109

_do_impl_check() (prism.Pipeline method), 61

_do_regression() (prism.emulator.Emulator
method), 81

_draw_projection_figure()
(prism._gui.widgets.OverviewDockWidget
method), 109

_evaluate() (prism.emulator.Emulator method), 82
_evaluate_model() (prism.Pipeline method), 61
_evaluate_sam_set() (prism.Pipeline method), 62
_get_active_par() (prism.emulator.Emulator

method), 82
_get_adj_exp() (prism.emulator.Emulator method),

82
_get_adj_var() (prism.emulator.Emulator method),

83
_get_backup_path() (prism.modellink.ModelLink

method), 96
_get_cov() (prism.emulator.Emulator method), 83
_get_cov_matrix() (prism.emulator.Emulator

method), 83
_get_default_parameters() (prism.Pipeline

method), 62
_get_default_parameters()

(prism.emulator.Emulator method), 84
_get_emul_i() (prism.emulator.Emulator method),

84
_get_emul_space() (prism.emulator.Emulator

method), 84
_get_eval_sam_set() (prism.Pipeline method), 63
_get_exp_dot_term() (prism.emulator.Emulator

method), 84
_get_ext_real_set() (prism.Pipeline method), 63
_get_f_impl() (prism.Pipeline method), 63
_get_impl_space() (prism.Pipeline method), 63
_get_inv_matrix() (prism.emulator.Emulator

method), 84
_get_iteration_data() (prism.Pipeline method),

63
_get_md_var() (prism.Pipeline method), 64
_get_mock_data() (prism.Pipeline method), 64
_get_model_par_seq()

(prism.modellink.ModelLink method), 97
_get_n_eval_sam() (prism.Pipeline method), 64
_get_paths() (prism.Pipeline method), 64
_get_poly_term_str() (prism.emulator.Emulator

method), 84
_get_prior_exp() (prism.emulator.Emulator

method), 84
_get_regr_cov() (prism.emulator.Emulator

method), 85
_get_rsdl_var() (prism.emulator.Emulator

method), 85
_get_sam_space() (prism.modellink.ModelLink

method), 97
_get_uni_impl() (prism.Pipeline method), 65

140 Index

PRISM documentation

_load_data() (prism.Pipeline method), 65
_load_data() (prism.emulator.Emulator method), 85
_load_emulator() (prism.emulator.Emulator

method), 86
_make_backup() (prism.modellink.ModelLink

method), 97
_make_call() (prism.Pipeline method), 65
_make_call_workers() (prism.Pipeline method),

66
_multi_call_model() (prism.Pipeline method), 66
_prepare_new_iteration()

(prism.emulator.Emulator method), 86
_process_call() (prism._pipeline.WorkerMode

static method), 75
_process_call_str()

(prism._pipeline.WorkerMode static method),
76

_read_backup() (prism.modellink.ModelLink
method), 98

_read_data_idx() (prism.emulator.Emulator
method), 86

_read_parameters() (prism.Pipeline method), 66
_retrieve_parameters()

(prism.emulator.Emulator method), 86
_save_data() (prism.Pipeline method), 66
_save_data() (prism.emulator.Emulator method), 86
_save_statistics() (prism.Pipeline method), 67
_set_impl_par() (prism.Pipeline method), 67
_set_mock_data() (prism.emulator.Emulator

method), 87
_set_modellink() (prism.emulator.Emulator

method), 87
_set_parameters() (prism.Pipeline method), 67
_set_parameters() (prism.emulator.Emulator

method), 87
_set_sam_set_data() (prism.emulator.Emulator

method), 87
_to_par_space() (prism.modellink.ModelLink

method), 98
_to_unit_space() (prism.modellink.ModelLink

method), 98
_write_data_idx() (prism.emulator.Emulator

method), 87
2+D model, 43
2D model, 43

A
about() (prism._gui.widgets.MainViewerWindow

method), 107
act_rsdl_var (prism.emulator.Emulator attribute),

87
Active emulator system, 41
Active parameters, 41

active_emul_s (prism.emulator.Emulator attribute),
88

active_par (prism.emulator.Emulator attribute), 88
active_par_data (prism.emulator.Emulator at-

tribute), 88
add_dict() (prism._gui.widgets.preferences.kwargs_dicts.KwargsDictBoxLayout

method), 122
add_editable_entry()

(prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage
method), 123

add_page() (prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialog
method), 122

Adjusted expectation, 41
Adjusted values, 41
Adjusted variance, 41
Adjustment term, 41
all_call_proj_attr()

(prism._gui.widgets.MainViewerWindow
method), 107

all_set_proj_attr()
(prism._gui.widgets.MainViewerWindow
method), 107

Analysis, 41
Analyze, 41
analyze() (prism.Pipeline method), 67
api_reference() (prism._gui.widgets.MainViewerWindow

method), 107

B
base_eval_sam (prism.Pipeline attribute), 73
BaseBox (class in prism._gui.widgets.core), 115
BLA, 41
box (prism._gui.widgets.preferences.options.OptionsEntry

attribute), 121

C
call_model() (prism.modellink.ModelLink method),

98
call_proj_attr() (prism._gui.widgets.MainViewerWindow

method), 108
call_type (prism.modellink.ModelLink attribute), 99
ccheck (prism.emulator.Emulator attribute), 88
CFilter (class in prism._internal), 131
check_compatibility() (in module

prism._internal), 132
check_vals() (in module prism._internal), 132
childEvent() (prism._gui.widgets.core.BaseBox

method), 115
close_projection_figures()

(prism._gui.widgets.OverviewDockWidget
method), 109

closeEvent() (prism._gui.widgets.MainViewerWindow
method), 108

Index 141

PRISM documentation

closeEvent() (prism._gui.widgets.OverviewDockWidget
method), 109

closeEvent() (prism._gui.widgets.preferences.options.OptionsDialog
method), 118

closeEvent() (prism._gui.widgets.ViewingAreaDockWidget
method), 113

cmap_selected() (prism._gui.widgets.preferences.custom_boxes.ColorMapBox
method), 126

code_objects (prism.Pipeline attribute), 73
ColorBox (class in prism._gui.widgets.preferences.custom_boxes),

125
ColorMapBox (class in

prism._gui.widgets.preferences.custom_boxes),
126

comm (prism.Pipeline attribute), 73
connect_box() (prism._gui.widgets.core.BaseBox

method), 115
Construct, 41
construct() (prism.Pipeline method), 67
Construction, 41
Construction check, 41
Controller, 41
Controller rank, 42
convert_data() (in module prism.modellink), 101
convert_parameters() (in module

prism.modellink), 101
convert_to_mpl_color()

(prism._gui.widgets.preferences.custom_boxes.ColorBox
static method), 125

convert_to_qcolor()
(prism._gui.widgets.preferences.custom_boxes.ColorBox
static method), 125

cov_mat_inv (prism.emulator.Emulator attribute), 88
Covariance matrix, 42
Covariance vector, 42
create_available_context_menu()

(prism._gui.widgets.OverviewDockWidget
method), 109

create_cmap_icon()
(prism._gui.widgets.preferences.custom_boxes.ColorMapBox
static method), 126

create_color_combobox()
(prism._gui.widgets.preferences.custom_boxes.ColorBox
method), 125

create_color_label()
(prism._gui.widgets.preferences.custom_boxes.ColorBox
method), 125

create_color_pixmap()
(prism._gui.widgets.preferences.custom_boxes.ColorBox
static method), 125

create_draw_projection_figures()
(prism._gui.widgets.OverviewDockWidget
method), 109

create_draw_save_projection_figures()

(prism._gui.widgets.OverviewDockWidget
method), 109

create_drawn_context_menu()
(prism._gui.widgets.OverviewDockWidget
method), 110

create_entry() (prism._gui.widgets.preferences.options.OptionsDialog
method), 118

create_field_box()
(prism._gui.widgets.preferences.custom_boxes.DefaultBox
method), 127

create_group() (prism._gui.widgets.preferences.options.OptionsDialog
method), 118

create_group_buttons()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 119

create_group_fonts()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 119

create_group_interface()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 119

create_group_proj_grid()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 119

create_group_proj_kwargs()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 119

create_menubar() (prism._gui.widgets.MainViewerWindow
method), 108

create_option_align()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 119

create_option_auto_show()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 119

create_option_auto_tile()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 119

create_option_dpi()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 119

create_option_kwargs_dicts()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 119

create_option_progress_dialog()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 119

create_option_proj_depth()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 119

create_option_proj_res()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 119

create_option_show_cuts()

142 Index

PRISM documentation

(prism._gui.widgets.preferences.options.OptionsDialog
method), 119

create_option_smooth()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 119

create_option_text_fonts()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 120

create_option_use_par_space()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 120

create_projection_figures()
(prism._gui.widgets.OverviewDockWidget
method), 110

create_projection_toolbar()
(prism._gui.widgets.ViewingAreaDockWidget
method), 113

create_statusbar()
(prism._gui.widgets.MainViewerWindow
method), 108

create_tab() (prism._gui.widgets.preferences.options.OptionsDialog
method), 120

create_tab_appearance()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 120

create_tab_general()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 120

create_traceback_box()
(prism._gui.widgets.helpers.ExceptionDialog
method), 116

create_type_alpha()
(prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage
method), 123

create_type_bool()
(prism._gui.widgets.preferences.custom_boxes.DefaultBox
method), 127

create_type_cmap()
(prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage
method), 123

create_type_color()
(prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage
method), 124

create_type_dpi()
(prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage
method), 124

create_type_figsize()
(prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage
method), 124

create_type_float()
(prism._gui.widgets.preferences.custom_boxes.DefaultBox
method), 127

create_type_int()
(prism._gui.widgets.preferences.custom_boxes.DefaultBox

method), 127
create_type_linestyle()

(prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage
method), 124

create_type_linewidth()
(prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage
method), 124

create_type_marker()
(prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage
method), 124

create_type_markersize()
(prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage
method), 124

create_type_scale()
(prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage
method), 124

create_type_str()
(prism._gui.widgets.preferences.custom_boxes.DefaultBox
method), 127

create_type_xscale()
(prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage
method), 124

create_type_yscale()
(prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage
method), 124

create_unavailable_context_menu()
(prism._gui.widgets.OverviewDockWidget
method), 110

criterion (prism.Pipeline attribute), 73
crystal() (prism.Pipeline method), 68
cut_idx (prism.Pipeline attribute), 73

D
Data error, 42
Data identifier, 42
Data point, 42
Data point identifier, 42
Data space, 42
Data value, 42
Data value space, 42
data_err (prism.modellink.ModelLink attribute), 100
data_idx (prism.modellink.ModelLink attribute), 100
data_idx_to_core (prism.emulator.Emulator

attribute), 88
data_spc (prism.modellink.ModelLink attribute), 100
data_val (prism.modellink.ModelLink attribute), 100
default (prism._gui.widgets.preferences.options.OptionsEntry

attribute), 121
DefaultBox (class in

prism._gui.widgets.preferences.custom_boxes),
127

delete_projection_figures()
(prism._gui.widgets.OverviewDockWidget
method), 110

Index 143

PRISM documentation

details() (prism.Pipeline method), 68
details_available_projection_figure()

(prism._gui.widgets.OverviewDockWidget
method), 110

details_drawn_projection_figure()
(prism._gui.widgets.OverviewDockWidget
method), 110

disable_save_button()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 120

discard_options()
(prism._gui.widgets.preferences.options.OptionsDialog
method), 120

discard_value() (prism._gui.widgets.preferences.options.OptionsEntry
method), 121

do_active_anal (prism.Pipeline attribute), 73
do_logging (prism.Pipeline attribute), 73
draw_projection_figures()

(prism._gui.widgets.OverviewDockWidget
method), 111

draw_save_projection_figures()
(prism._gui.widgets.OverviewDockWidget
method), 111

E
emul_i (prism.emulator.Emulator attribute), 88
emul_load (prism.emulator.Emulator attribute), 88
emul_s (prism.emulator.Emulator attribute), 88
emul_s_to_core (prism.emulator.Emulator at-

tribute), 88
emul_space (prism.emulator.Emulator attribute), 88
emul_type (prism.emulator.Emulator attribute), 88
Emulation method, 42
Emulator, 42
Emulator (class in prism.emulator), 79
emulator (prism.Pipeline attribute), 73
Emulator evaluation samples, 42
Emulator iteration, 42
Emulator system, 42
Emulator type, 42
enable_save_button()

(prism._gui.widgets.preferences.options.OptionsDialog
method), 120

entry_type_selected()
(prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage
method), 124

Evaluate, 42
evaluate() (prism.Pipeline method), 69
Evaluation, 42
Evaluation set, 45
ExceptionDialog (class in

prism._gui.widgets.helpers), 115
exp_dot_term (prism.emulator.Emulator attribute),

89

External model realization set, 42

F
f_infl (prism.emulator.Emulator attribute), 89
FeatureWarning, 131
FigSizeBox (class in

prism._gui.widgets.preferences.custom_boxes),
128

File (prism.Pipeline attribute), 73
format_exception()

(prism._gui.widgets.helpers.ExceptionDialog
method), 116

format_traceback()
(prism._gui.widgets.helpers.ExceptionDialog
method), 116

freeze_active_par (prism.Pipeline attribute), 73
Frozen active parameters, 42
Frozen parameters, 42
FSLR, 42

G
Gaussian correlation length, 42
Gaussian sigma, 42
GaussianLink (class in prism.modellink), 93
get_bibtex() (in module prism._internal), 132
get_box_value() (in module

prism._gui.widgets.core), 115
get_box_value() (prism._gui.widgets.core.BaseBox

method), 115
get_box_value() (prism._gui.widgets.preferences.custom_boxes.ColorBox

method), 125
get_box_value() (prism._gui.widgets.preferences.custom_boxes.ColorMapBox

method), 127
get_box_value() (prism._gui.widgets.preferences.custom_boxes.DefaultBox

method), 127
get_box_value() (prism._gui.widgets.preferences.custom_boxes.FigSizeBox

method), 128
get_box_value() (prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage

method), 124
get_default_dock_positions()

(prism._gui.widgets.MainViewerWindow
method), 108

get_default_dock_positions()
(prism._gui.widgets.ViewingAreaDockWidget
method), 113

get_default_model_data()
(prism.modellink.ModelLink method), 98

get_default_model_parameters()
(prism.modellink.ModelLink method), 98

get_formatter() (in module prism._internal), 132
get_handler() (in module prism._internal), 132
get_hybrid_lnpost_fn() (in module prism.utils),

103
get_info() (in module prism._internal), 132

144 Index

PRISM documentation

get_md_var() (prism.modellink.ModelLink method),
99

get_modified_box_signal() (in module
prism._gui.widgets.core), 115

get_option() (prism._gui.widgets.preferences.options.OptionsDialog
method), 120

get_PRISM_File() (in module prism._internal), 132
get_proj_attr() (prism._gui.widgets.MainViewerWindow

method), 108
get_str_repr() (prism.modellink.ModelLink

method), 99
get_walkers() (in module prism.utils), 104
getCLogger() (in module prism._internal), 132
getLogger() (in module prism._internal), 132
getRLogger() (in module prism._internal), 133

H
HDF5, 42
hdf5_file (prism.Pipeline attribute), 73
Hybrid sampling, 43

I
impl_cut (prism.Pipeline attribute), 73
impl_sam (prism.Pipeline attribute), 74
Implausibility check, 43
Implausibility cut-off check, 43
Implausibility cut-offs, 43
Implausibility value, 43
Implausibility wildcard, 43
init() (prism._gui.widgets.helpers.ExceptionDialog

method), 116
init() (prism._gui.widgets.helpers.OverviewListWidget

method), 116
init() (prism._gui.widgets.helpers.ThreadedProgressDialog

method), 117
init() (prism._gui.widgets.MainViewerWindow

method), 108
init() (prism._gui.widgets.OverviewDockWidget

method), 111
init() (prism._gui.widgets.preferences.custom_boxes.ColorBox

method), 126
init() (prism._gui.widgets.preferences.custom_boxes.DefaultBox

method), 127
init() (prism._gui.widgets.preferences.custom_boxes.FigSizeBox

method), 128
init() (prism._gui.widgets.preferences.kwargs_dicts.KwargsDictBoxLayout

method), 122
init() (prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialog

method), 123
init() (prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage

method), 124
init() (prism._gui.widgets.preferences.options.OptionsDialog

method), 120

init() (prism._gui.widgets.preferences.options.OptionsEntry
method), 121

init() (prism._gui.widgets.ViewingAreaDockWidget
method), 113

Inverted covariance matrix, 42
is_controller (prism.Pipeline attribute), 74
is_worker (prism.Pipeline attribute), 74
Iteration, 42

K
kill_threads() (prism._gui.widgets.helpers.ThreadedProgressDialog

method), 117
KwargsDictBoxLayout (class in

prism._gui.widgets.preferences.kwargs_dicts),
121

KwargsDictDialog (class in
prism._gui.widgets.preferences.kwargs_dicts),
122

KwargsDictDialogPage (class in
prism._gui.widgets.preferences.kwargs_dicts),
123

L
l_corr (prism.emulator.Emulator attribute), 89
LHD, 43
listen_for_calls() (prism._pipeline.WorkerMode

method), 76

M
MainViewerWindow (class in prism._gui.widgets),

107
make_call() (prism._pipeline.WorkerMode static

method), 76
make_call_workers()

(prism._pipeline.WorkerMode static method),
77

Master file, 43
Master HDF5 file, 43
MCMC, 43
method (prism.emulator.Emulator attribute), 89
Mock data, 43
mod_set (prism.emulator.Emulator attribute), 89
Model, 43
Model data, 43
Model discrepancy variance, 43
Model evaluation samples, 43
Model output, 43
Model outputs, 43
Model parameter, 43
Model parameters, 44
Model realization samples, 44
Model realization set, 44
Model realizations, 44
ModelLink, 43

Index 145

PRISM documentation

ModelLink (class in prism.modellink), 93
modellink (prism.Pipeline attribute), 74
ModelLink subclass, 43
move_logger() (in module prism._internal), 133
MPI, 44
MPI rank, 44
MPI_call (prism.modellink.ModelLink attribute), 99
MSE, 44
multi_call (prism.modellink.ModelLink attribute),

100

N
n_cross_val (prism.emulator.Emulator attribute), 89
n_data (prism.modellink.ModelLink attribute), 100
n_emul_s (prism.emulator.Emulator attribute), 89
n_emul_s_tot (prism.emulator.Emulator attribute),

89
n_eval_sam (prism.Pipeline attribute), 74
n_gaussians (prism.modellink.GaussianLink at-

tribute), 93
n_impl_sam (prism.Pipeline attribute), 74
n_par (prism.modellink.ModelLink attribute), 100
n_sam (prism.emulator.Emulator attribute), 89
n_sam_init (prism.Pipeline attribute), 74
name (prism._gui.widgets.preferences.options.OptionsEntry

attribute), 121
name (prism.modellink.ModelLink attribute), 100
nD model, 43
np_array() (in module prism._internal), 133

O
OLS, 44
open() (prism._gui.widgets.helpers.ThreadedProgressDialog

method), 117
OptionsDialog (class in

prism._gui.widgets.preferences.options),
118

OptionsEntry (class in
prism._gui.widgets.preferences.options),
121

order (prism.modellink.PolyLink attribute), 101
OverviewDockWidget (class in prism._gui.widgets),

108
OverviewListWidget (class in

prism._gui.widgets.helpers), 116

P
par_est (prism.modellink.ModelLink attribute), 100
par_name (prism.modellink.ModelLink attribute), 100
par_rng (prism.modellink.ModelLink attribute), 100
Parameter set, 44
pas_rsdl_var (prism.emulator.Emulator attribute),

89
Passive parameters, 44

Pipeline, 44
Pipeline (class in prism), 57
Plausible region, 44
Plausible samples, 44
poly_coef (prism.emulator.Emulator attribute), 89
poly_coef_cov (prism.emulator.Emulator attribute),

90
poly_idx (prism.emulator.Emulator attribute), 90
poly_order (prism.emulator.Emulator attribute), 90
poly_powers (prism.emulator.Emulator attribute), 90
poly_terms (prism.emulator.Emulator attribute), 90
PolyLink (class in prism.modellink), 101
Polynomial order, 44
pot_active_par (prism.Pipeline attribute), 74
Potentially active parameters, 44
Prior covariance, 44
Prior expectation, 44
Prior variance, 44
PRISM, 44
PRISM Pipeline, 44
prism._gui.widgets.base_layouts (module),

113
prism._gui.widgets.base_widgets (module),

113
prism._gui.widgets.core (module), 115
prism._gui.widgets.helpers (module), 115
prism._gui.widgets.preferences.custom_boxes

(module), 125
prism._gui.widgets.preferences.kwargs_dicts

(module), 121
prism._gui.widgets.preferences.options

(module), 118
prism._internal (module), 129
prism.utils (module), 102
prism_dict (prism.Pipeline attribute), 74
PRISM_Logger (class in prism._internal), 131
prism_version (prism.emulator.Emulator attribute),

90
proj_depth (prism.Pipeline attribute), 74
proj_res (prism.Pipeline attribute), 74
Project, 44
project() (prism.Pipeline method), 70
Projection, 44
Projection figure, 44
Python Enhancement Proposals

PEP 377, 31

Q
QW_QAction (class in

prism._gui.widgets.base_widgets), 114
QW_QComboBox (class in

prism._gui.widgets.base_widgets), 114
QW_QEditableComboBox (class in

prism._gui.widgets.base_widgets), 114

146 Index

PRISM documentation

QW_QLabel (class in prism._gui.widgets.base_widgets),
115

QW_QMenu (class in prism._gui.widgets.base_widgets),
115

QW_QToolBar (class in
prism._gui.widgets.base_widgets), 115

R
raise_exception()

(prism._gui.widgets.helpers.ThreadedProgressDialog
method), 117

rank (prism.Pipeline attribute), 75
recreate_projection_figures()

(prism._gui.widgets.OverviewDockWidget
method), 111

redraw_projection_figures()
(prism._gui.widgets.OverviewDockWidget
method), 111

Regression, 44
Regression covariances, 44
remove_editable_entry()

(prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage
method), 124

RequestError, 131
RequestWarning, 131
reset_options() (prism._gui.widgets.preferences.options.OptionsDialog

method), 120
reset_value() (prism._gui.widgets.preferences.options.OptionsEntry

method), 121
Residual variance, 44
RFilter (class in prism._internal), 131
Root directory, 45
root_dir (prism.Pipeline attribute), 75
rsdl_var (prism.emulator.Emulator attribute), 90
run() (prism.Pipeline method), 72

S
sam_set (prism.emulator.Emulator attribute), 90
Sample, 44
Sample set, 45
save_as_projection_figures()

(prism._gui.widgets.OverviewDockWidget
method), 111

save_options() (prism._gui.widgets.preferences.options.OptionsDialog
method), 120

save_projection_figures()
(prism._gui.widgets.OverviewDockWidget
method), 112

save_value() (prism._gui.widgets.preferences.options.OptionsEntry
method), 121

save_view() (prism._gui.widgets.ViewingAreaDockWidget
method), 113

set_base_logger() (in module prism._internal),
133

set_box_value() (in module
prism._gui.widgets.core), 115

set_box_value() (prism._gui.widgets.core.BaseBox
method), 115

set_box_value() (prism._gui.widgets.preferences.custom_boxes.ColorBox
method), 126

set_box_value() (prism._gui.widgets.preferences.custom_boxes.ColorMapBox
method), 127

set_box_value() (prism._gui.widgets.preferences.custom_boxes.DefaultBox
method), 127

set_box_value() (prism._gui.widgets.preferences.custom_boxes.FigSizeBox
method), 128

set_box_value() (prism._gui.widgets.preferences.kwargs_dicts.KwargsDictDialogPage
method), 124

set_color() (prism._gui.widgets.preferences.custom_boxes.ColorBox
method), 126

set_color_label()
(prism._gui.widgets.preferences.custom_boxes.ColorBox
method), 126

set_default_dock_positions()
(prism._gui.widgets.MainViewerWindow
method), 108

set_default_dock_positions()
(prism._gui.widgets.ViewingAreaDockWidget
method), 113

set_proj_attr() (prism._gui.widgets.MainViewerWindow
method), 108

set_successful_finish()
(prism._gui.widgets.helpers.ThreadedProgressDialog
method), 117

setDetails() (prism._gui.widgets.base_widgets.QW_QAction
method), 114

show_available_context_menu()
(prism._gui.widgets.OverviewDockWidget
method), 112

show_colorpicker()
(prism._gui.widgets.preferences.custom_boxes.ColorBox
method), 126

show_drawn_context_menu()
(prism._gui.widgets.OverviewDockWidget
method), 112

show_exception_details() (in module
prism._gui.widgets.helpers), 117

show_pipeline_details_overview()
(prism._gui.widgets.MainViewerWindow
method), 108

show_projection_figures()
(prism._gui.widgets.OverviewDockWidget
method), 112

show_unavailable_context_menu()
(prism._gui.widgets.OverviewDockWidget
method), 112

sigma (prism.emulator.Emulator attribute), 90
SineWaveLink (class in prism.modellink), 101

Index 147

PRISM documentation

single_call (prism.modellink.ModelLink attribute),
100

size (prism.Pipeline attribute), 75
start_gui() (in module prism._gui), 128
start_gui() (prism.Pipeline method), 72

T
test_subclass() (in module prism.modellink), 102
ThreadedProgressDialog (class in

prism._gui.widgets.helpers), 117
toggle_traceback_box()

(prism._gui.widgets.helpers.ExceptionDialog
method), 116

U
Univariate implausibility value, 43
update_size() (prism._gui.widgets.helpers.ExceptionDialog

method), 116
use_mock (prism.emulator.Emulator attribute), 90
use_progress_dialog()

(prism._gui.widgets.OverviewDockWidget
method), 112

use_regr_cov (prism.emulator.Emulator attribute),
91

V
value (prism._gui.widgets.preferences.options.OptionsEntry

attribute), 121
ViewingAreaDockWidget (class in

prism._gui.widgets), 113

W
Worker, 45
Worker mode, 45
Worker rank, 45
worker_mode (prism.Pipeline attribute), 75
WorkerMode (class in prism._pipeline), 75
Working directory, 45
working_dir (prism.Pipeline attribute), 75

148 Index

	Introduction
	Why use PRISM?
	When (not) to use PRISM?

	Getting started
	Installation
	Running tests
	Example usage

	The PRISM pipeline
	MPI implementation

	ModelLink: A crash course
	Writing a ModelLink subclass
	Data identifiers (data_idx)
	Wrapping a model (call_model)
	Input arguments
	Multi-calling
	Backing up progress

	Model discrepancy variance (md_var)
	Theory
	Implementation

	Using PRISM
	Minimal example
	Projections
	Properties
	Options
	Crystal (GUI)

	Dual nature (normal/worker mode)
	Hybrid sampling
	Algorithm
	Usage
	Application

	General usage rules
	External data files
	PRISM parameters file
	Model parameters file
	Model data file

	Descriptions
	Terminology
	PRISM parameters
	HDF5

	FAQ
	How do I contribute?
	How do I report a bug/problem?
	What does the term … mean?
	Where can I get PRISM’s colormaps?
	Which OSs are supported?

	Community guidelines
	License
	Citation
	Additions

	Pipeline
	Emulator
	Classes
	Emulator

	ModelLink
	Classes
	GaussianLink
	ModelLink
	PolyLink
	SineWaveLink

	Utilities

	Utilities
	Projection GUI
	Classes
	MainViewerWindow
	OverviewDockWidget
	ViewingAreaDockWidget

	Widgets
	GUI Base Layout Classes
	GUI Base Widget Classes
	GUI Widgets Core
	GUI Widget Helpers
	GUI Preferences

	Functions

	Internal
	Acknowledgements
	Python Module Index
	Index

